Begomovirus disease of pumpkin crop in India and its management strategies possibility: a review

Authors

  • Ram Prasad Kushvaha Molecular Plant Virology Lab, Department of Microbiology, Barkatullah University, Bhopal-462026, Madhya Pradesh, India
  • Chitra Kushwaha Molecular Plant Virology Lab, Department of Microbiology, Barkatullah University, Bhopal-462026, Madhya Pradesh, India
  • Sunil Kumar Snehi Molecular Plant Virology Lab, Department of Microbiology, Barkatullah University, Bhopal-462026, Madhya Pradesh, India

DOI:

https://doi.org/10.25081/jsa.2024.v8.9053

Keywords:

Begomovirus, Cucurbitaceae, Conventional method, Pathogen, Vector, CRISPR/Cas

Abstract

Pumpkin is an important commercial crop grown worldwide in tropical and subtropical regions. The whitefly-transmitted Pumpkin yellow vein mosaic disease seriously threatens pumpkin cultivation worldwide. The advent of transgenic technology in the 1980s revolutionized the possibilities for introducing virus resistance into agriculturally important plant species. It offered a powerful tool to enhance crop protection and provided a pathway to potentially unlimited sources of resistance against viral diseases. The ongoing research and development in this field continue to explore and refine conventional and non-conventional approaches for effective virus management in agriculture crops. This review focuses on developing transgenic resistance against begomoviruses and discusses possible management strategies to address these challenges.

Downloads

Download data is not yet available.

References

Abubakar, M., Koul, B., Chandrashekar, K., Raut, A., & Yadav, D. (2022). Whitefly (Bemisia tabaci) management (WFM) strategies for sustainable agriculture: a review. Agriculture, 12(9), 1317. https://doi.org/10.3390/agriculture12091317

Alves-Junior, L., Niemeier, S., Hauenschild, A., Rehmsmeier, M., & Merkle, T. (2009). Comprehensive prediction of novel microRNA targets in Arabidopsis thaliana. Nucleic Acids Research, 37(12), 4010-4021. https://doi.org/10.1093/nar/gkp272

Baldodiya, G. M., Devi, K., Borah, B. K., Nath, P. D., & Modi, M. K. (2019). Characterization and in silico proteomic analysis of C2 and C3 proteins of squash leaf curl China virus associated with pumpkin leaf curl disease in Assam, India. Acta Virologica, 63(2), 139-148. https://doi.org/10.4149/av_2019_202

Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., & Roberts, J. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 1322-1326. https://doi.org/10.1038/nbt1359

Beam, K., & Ascencio-Ibáñez, J. T. (2020). Geminivirus resistance: a mini review. Frontiers in Plant Science, 11, 1131. https://doi.org/10.3389/fpls.2020.01131

Briddon, R. W. (1990). The molecular biology of geminivirus transmission by insects. Doctoral Dissertation, University of East Anglia.

Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M., Zhou, X., & Fauquet, C. M. (2008). Recommendations for the classification and nomenclature of the DNA-β satellites of begomoviruses. Archives of Virology, 153, 763-781. https://doi.org/10.1007/s00705-007-0013-6

Briddon, R. W., Bull, S. E., Amin, I., Idris, A. M., Mansoor, S., Bedford, I. D., Dhawan, P., Rishi, N., Siwatch, S. S., Abdel-Salam, A. M., Brown, J. K., Zafar, Y., & Markham, P. G. (2003). Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses. Virology, 312(1), 106-121. https://doi.org/10.1016/s0042-6822(03)00200-9

Briddon, R. W., Bull, S. E., Amin, I., Mansoor, S., Bedford, I. D., Rishi, N., Siwatch, S. S., Zafar, Y., Abdel-Salam, A. M., & Markham, P. G. (2004). Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus–DNA β complexes. Virology, 324(2), 462-474. https://doi.org/10.1016/j.virol.2004.03.041

Capoor, S. P., & Ahmad, R. U. (1975). Yellow vein mosaic disease of field pumpkin and its relationship with the vector, Bemisia tabaci. Phytopathology, 28, 241-246.

Chilakamarthi, U., Mukherjee, S. K., & Deb, J. K. (2007). Intervention of geminiviral replication in yeast by ribozyme mediated downregulation of its Rep protein. FEBS Letters, 581(14), 2675-2683. https://doi.org/10.1016/j.febslet.2007.04.084

Dhillon, N. P. S., Srimat, S., Laenoi, S., Bhunchoth, A., Phuangrat, B., Warin, N., Deeto, R., Chatchawankanphanich, O., Jom, K. N., Sae-tan, S., Jang, S.-W., Noh, H., Schafleitner, R., Chan, Y.-L., Pico, B., Saez, C., & Kenyon, L. (2021). Resistance to three distinct Begomovirus species in the agronomical superior tropical pumpkin line AVPU1426 developed at the World Vegetable Center. Agronomy, 11(6), 1256. https://doi.org/10.3390/agronomy11061256

Dry, I. B., Krake, L. R., Rigden, J. E., & Rezaian, M. A. (1997). A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proceedings of the National Academy of Sciences, 94(13), 7088-7093. https://doi.org/10.1073/pnas.94.13.7088

Elango, K., Sobhana, E., Sujithra, P., Bharath, D., & Ahuja, A. (2020). Traditional agricultural practices as a tool for management of insects and nematode pests of crops: An overview. Journal of Entomology and Zoology Studies, 8(3), 237-245.

Ghanim, M., Kontsedalov, S., & Czosnek, H. (2007). Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochemistry and Molecular Biology, 37(7), 732-738. https://doi.org/10.1016/j.ibmb.2007.04.006

Hong, Y., Saunders, K., Hartley, M. R., & Stanley, J. (1996). Resistance to Geminivirus infection by virus-induced expression of dianthin in transgenic plants. Virology, 220(1), 119-127. https://doi.org/10.1006/viro.1996.0292

Horowitz, A. R., Kontsedalov, S., Khasdan, V., & Ishaaya, I. (2005). Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58(4), 216-225. https://doi.org/10.1002/arch.20044

Ibrahim, A. B., Monteiro, T. R., Cabral, G. B., & Aragão, F. J. L. (2017). RNAi-mediated resistance to whitefly (Bemisia tabaci) in genetically engineered lettuce (Lactuca sativa). Transgenic Research, 26(5), 613-624. https://doi.org/10.1007/s11248-017-0035-0

Ilyas, M., Amin, I., Mansoor, S., Briddon, R. W., & Saeed, M. (2010). Challenges for transgenic resistance to control geminiviral diseases. In P. Sharma, R. K. Gaur & M. Ikegami (Eds.), Emerging geminivirial diseases and their management (pp. 1-35) New York, US: Nova Science Publishers, Inc.

Isman, M. B. (2017). Bridging the gap: moving botanical insecticides from the laboratory to the farm. Industrial Crops and Products, 110, 10-14. https://doi.org/10.1016/j.indcrop.2017.07.012

Jacks, T. J., Hensarling, T. P., & Yatsu, L. Y. (1972). Cucurbit seeds: I. Characterizations and uses of oils and proteins. A review. Economic Botany, 26, 135-141. https://doi.org/10.1007/bf02860774

Jayashree, K., Pun, K. B., & Doraiswamy, S. (1999). Virus-vector relationships of yellow vein mosaic virus and whitefly (Bemisia tabaci) in pumpkin. Indian Phytopathology, 52(1), 10-13.

Ji, Y., Schuster, D. J., & Scott, J. W. (2007). Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding, 20, 271-284. https://doi.org/10.1007/s11032-007-9089-7

Khan, M. S. (2006). Molecular characterization of a geminivirus infecting chilli and weeds for development of diagnostics and effective management strategies of the virus. Doctoral Dissertation, Lucknow University.

Kim, V. N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 6, 376-385. https://doi.org/10.1038/nrm1644

Kulczyński, B., & Gramza-Michałowska, A. (2019). The profile of secondary metabolites and other bioactive compounds in Cucurbita pepo L. and Cucurbita moschata pumpkin cultivars. Molecules, 24(16), 2945. https://doi.org/10.3390/molecules24162945

Kushvaha, R. P., Parihar, S. S., & Snehi, S. K. (2023a). Molecular Identification of Tomato leaf curl New Delhi virus Associated with Mosaic Disease of Pumpkin from Central India. Current Agriculture Research Journal, 11(2), 401-410. https://doi.org/10.12944/CARJ.11.2.04

Kushvaha, R. P., Parihar, S. S., & Snehi, S. K. (2023b). Molecular identification of Squash leaf curl China virus associated with mosaic disease of Cucurbita maxima L. (pumpkin) from Madhya Pradesh. Agrica, 12(1), 57-63. https://doi.org/10.5958/2394-448X.2023.00007.X

Kwiri, R., Winini, C., Musengi, A., Mudyiwa, M., Nyambi, C., Muredzi, P., & Malunga, A. (2014). Proximate composition of pumpkin gourd (Cucurbita pepo) seeds from Zimbabwe. International Journal of Nutrition and Food Sciences, 3(4), 279-283. https://doi.org/10.11648/j.ijnfs.20140304.17

Lapidot, M., & Friedmann, M. (2002). Breeding for resistance to whitefly‐transmitted geminiviruses. Annals of Applied Biology, 140(2), 109-127. https://doi.org/10.1111/j.1744-7348.2002.tb00163.x

Lecoq, H. (1998). Control of plant virus diseases by cross protection. In A. Hadidi, R. K. Khetarpal & H. Koganezawa (Eds.), Plant Virus Disease Control (pp. 33-40) Minnesota, USA: APS Press.

Leung, A. K. L., & Sharp, P. A. (2007). microRNAs: a safeguard against turmoil? Cell, 130(4), 581-585. https://doi.org/10.1016/j.cell.2007.08.010

Lindbo, J. A., Silva-Rosales, L., Proebsting, W. M., & Dougherty, W. G. (1993). Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. The Plant Cell, 5(12), 1749-1759. https://doi.org/10.1105/tpc.5.12.1749

Liu, T.-X., & Meister, C. W. (2001). Managing Bemisia argentifolii on spring melons with insect growth regulators, entomopathogens and imidacloprid in South Texas. Subtropical Plant Science: Journal of the Rio Grande Valley Horticultural Society, 53, 44-48.

Lucioli, A., Noris, E., Brunetti, A., Tavazza, R., Ruzza, V., Castillo, A. G., Bejarano, E. R., Accotto, G. P., & Tavazza, M. (2003). Tomato yellow leaf curl Sardinia virus rep-derived resistance to homologous and heterologous geminiviruses occurs by different mechanisms and is overcome if virus-mediated transgene silencing is activated. Journal of Virology, 77(12), 6785-6798. https://doi.org/10.1128/JVI.77.12.6785-6798.2003

Maruthi, M. N., Rekha, A. R., & Muniyappa, V. (2007b). Pumpkin yellow vein mosaic disease is caused by two distinct begomoviruses: complete viral sequences and comparative transmission by an indigenous Bemisia tabaci and the introduced B‐biotype. EPPO Bulletin, 37(2), 412-419. https://doi.org/10.1111/j.1365-2338.2007.01127.x

Maruthi, M. N., Rekha, A. R., Mirza, S. H., Alam, S. N., & Colvin, J. (2007a). PCR-based detection and partial genome sequencing indicate high genetic diversity in Bangladeshi begomoviruses and their whitefly vector, Bemisia tabaci. Virus Genes, 34, 373-385. https://doi.org/10.1007/s11262-006-0027-2

Muniyappa, V., Maruthi, M. N., Babitha, C. R., Colvin, J., Briddon, R. W., & Rangaswamy, K. T. (2003). Characterisation of pumpkin yellow vein mosaic virus from India. Annals of Applied Biology, 142(3), 323-331. https://doi.org/10.1111/j.1744-7348.2003.tb00257.x

Namrata, J., Saritha, R. K., Datta, D., Singh, M., Dubey, R. S., Rai, A. B., & Rai, M. (2010). Molecular characterization of Tomato leaf curl Palampur virus and pepper leaf curl betasatellite naturally infecting pumpkin (Cucurbita moschata) in India. Virus Disease, 21(2), 128-132. https://doi.org/10.1007/s13337-011-0022-7

Namrata, J., Saritha, R. K., Datta, D., Singh, M., Dubey, R. S., Rai, A. B., & Rai, M. (2012). Mixed infections of begomoviruses in pumpkins with yellow vein mosaic disease in north India. Archives of Phytopathology and Plant Protection, 45(8), 938-941. https://doi.org/10.1080/03235408.2011.646670

Narayanan, S., Surendranath, K., Bora, N., Surolia, A., & Karande, A. A. (2005). Ribosome inactivating proteins and apoptosis. FEBS Letters, 579(6), 1324-1331. https://doi.org/10.1016/j.febslet.2005.01.038

Nawaz-ul-Rehman, M. S., & Fauquet, C. M. (2009). Evolution of geminiviruses and their satellites. FEBS Letters, 583(12), 1825-1832. https://doi.org/10.1016/j.febslet.2009.05.045

Negi, S., Imanishi, M., Matsumoto, M., & Sugiura, Y. (2008). New redesigned zinc‐finger proteins: Design strategy and its application. Chemistry A European Journal, 14(11), 3236-3249. https://doi.org/10.1002/chem.200701320

Owor, B., Legg, J. P., Okao‐Okuja, G., Obonyo, R., Kyamanywa, S., Ogenga‐Latigo, M. W. (2004). Field studies of cross protection with cassava mosaic geminiviruses in Uganda. Journal of Phytopathology, 152(4), 243-249. https://doi.org/10.1111/j.1439-0434.2004.00837.x

Padhi, N. N., & Misra, R. P. (1987). Control of Rotylenchulus reniformis on French bean (Phaseolus vulgaris L.). Indian Journal of Nematology, 17(1), 130-131.

Padidam, M., Beachy, R. N., & Fauquet, C. M. (1999). A phage single-stranded DNA (ssDNA) binding protein complements ssDNA accumulation of a geminivirus and interferes with viral movement. Journal of Virology, 73(2), 1609-1616. https://doi.org/10.1128/jvi.73.2.1609-1616.1999

Pandey, J., & Verma, N. (2017). First report of Mungbean yellow mosaic India virus infecting pumpkin in India. New Disease Report, 36(1), 23. https://doi.org/10.5197/j.2044-0588.2017.036.023

Pelham, J., Fletcher, J. T., & Hawkins, J. H. (1970). The establishment of a new strain of tobacco mosaic virus resulting from the use of resistant varieties of tomato. Annals of Applied Biology, 65(2), 293-297. https://doi.org/10.1111/j.1744-7348.1970.tb04590.x

Perring, T. M., Stansly, P. A., Liu, T. X., Smith, H. A., & Andreason, S. A. (2018). Whiteflies: Biology, ecology, and management. In W. Wakil, G. E. Brust & T. M. Perring (Eds.), Sustainable Management of Arthropod Pests of Tomato (pp. 73-110). Cambridge, US: Academic Press. https://doi.org/10.1016/B978-0-12-802441-6.00004-8

Phaneendra, C., Rao, K. R. S. S., Jain, R. K., & Mandal, B. (2012). Tomato leaf curl New Delhi virus is associated with pumpkin leaf curl: a new disease in northern India. Indian Journal of Virology, 23, 42-45. https://doi.org/10.1007/s13337-011-0054-z

Quesada-Moraga, E., Maranhao, E. A. A., Valverde-García, P., & Santiago-Álvarez, C. (2006). Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements, and toxicogenic activity. Biological Control, 36(3), 274-287. https://doi.org/10.1016/j.biocontrol.2005.09.022

Raj, S. K., Snehi, S. K., Khan, M. S., Singh, R., Tiwari, A. K., & Rao, G. P. (2012). Biological, Biological, Molecular studies and Management of Begomovirus infecting Cucurbitaceous crops in India. In G. P. Rao, B. Mandal, V. K. Barnawal & N. Rishi (Eds.), Recent Trend in Plant Virology (pp. 135-155) Texas, US: Studium Press LLC.

Razze, J. M., Liburd, O. E., Nuessly, G. S., & Samuel-Foo, M. (2016). Evaluation of bioinsecticides for management of Bemisia tabaci (Hemiptera: Aleyrodidae) and the effect on the whitefly predator Delphastus catalinae (Coleoptera: Coccinellidae) in organic squash. Journal of Economic Entomology, 109(4), 1766-1771. https://doi.org/10.1093/jee/tow108

Rybicki, E. P. (1994). A phylogenetic and evolutionary justification for three genera of Geminiviridae. Archives of Virology, 139, 49-77. https://doi.org/10.1007/BF01309454

Salstrom, J. S., & Pratt, D. (1971). Role of coliphage M13 gene 5 in single-stranded DNA production. Journal of Molecular Biology, 61(3), 489-501. https://doi.org/10.1016/0022-2836(71)90061-1

Saunders, K., Bedford, I. D., Briddon, R. W., Markham, P. G., Wong, S. M., & Stanley, J. (2000). A unique virus complex causes Ageratum yellow vein disease. Proceedings of the National Academy of Sciences, 97(12), 6890-6895. https://doi.org/10.1073/pnas.97.12.6890

Saunders, K., Briddon, R. W., & Stanley, J. (2008). Replication promiscuity of DNA-β satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA-β satellite localizes sequences involved in replication. Journal of General Virology, 89(12), 3165-3172. https://doi.org/10.1099/vir.0.2008/003848-0

Sera, T. (2017). Use of peptide aptamers, cationic peptides and artificial zinc finger proteins to generate resistance to plant viruses. Current Opinion in Virology, 26, 120-124. https://doi.org/10.1016/j.coviro.2017.07.023

Shejulpatil, S. J., Kakad, M. N., & Lande, G. K. (2019). Effect of insecticides against whitefly on brinjal under field condition. International Journal of Chemical Studies, 7(4), 1100-1103.

Singh, A. K., Mishra, K. K., Chattopadhyay, B., & Chakraborty, S. (2009). Biological and molecular characterization of a begomovirus associated with yellow mosaic vein mosaic disease of pumpkin from Northern India. Virus Genes, 39, 359-370. https://doi.org/10.1007/s11262-009-0396-4

Singh, R. (2005). Molecular characterization of a virus causing yellow mosaic disease in Cucurbita maxima and development of diagnostics for the detection of the virus. Doctoral Disseration, Lucknow University.

Singh, R., Raj, S. K., & Chandra, G. (2001). Association of a monopartite begomovirus with yellow mosaic disease of pumpkin (Cucurbita maxima) in India. Plant Disease, 85(9), 1029-1029. https://doi.org/10.1094/PDIS.2001.85.9.1029C

Singh, R., Raj, S. K., & Prasad, V. (2008). Molecular characterization of a strain of Squash leaf curl China virus from north India. Journal of Phytopathology, 156(4), 222-228. https://doi.org/10.1111/j.1439-0434.2007.01347.x

Snehi, S. K., Parihar, S. S., Gupta, G., Purvia, A. S., & Singh, V. (2018). Molecular identification of a begomovirus associated with yellow vein net disease on Malva parviflora L. from India. Microbiology: Current Research, 2(2), 24-29. https://doi.org/10.4066/2591-8036.17-3895

Sohrab, S. S., Mandal, B., Ali, A., & Varma, A. (2006). Molecular diagnosis of emerging begomovirus diseases in cucurbits occurring in northern India. Indian Journal of Virology, 17(2), 88-95.

Somvanshi, P., Khan, M. S., Raj, S. K., & Seth, P. K. (2009). Ageratum conizoides and Parthenium hystorophorous: alternate hosts of Begomovirus and Phytoplasma. International day for Biological diversity, Invasive Alien Species, Souvenir, 44-45.

Stanley, J., Bisaro, D. M., Briddon, R. W., Brown, T. K., Fauquet, C. M., Harrison, B. D., Rybicki, E. P., & Stenger, D. C. (2005). Family geminiviridae. In C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball (Eds.), The International Committee on the Taxonomy of Viruses, 8th Report (pp. 301-326) London, UK: Academic Press.

Stanley, J., Frischmuth, T., & Ellwood, S. (1990). Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants. Proceedings of the National Academy of Sciences, 87(16), 6291-6295. https://doi.org/10.1073/pnas.87.16.6291

Takenaka, K., Koshino-Kimura, Y., Aoyama, Y., & Sera, T. (2007). Inhibition of tomato yellow leaf curl virus replication by artificial zinc-finger proteins. Nucleic Acids Symposium Series, 51(1), 429-430. https://doi.org/10.1093/nass/nrm215

Tao, X., & Zhou, X. (2004). A modified viral satellite DNA that suppresses gene expression in plants. The Plant Journal, 38(5), 850-860. https://doi.org/10.1111/j.1365-313X.2004.02087.x

Tashkandi, M., Ali, Z., Aljedaani, F., Shami, A., & Mahfouz, M. M. (2018). Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signaling & Behavior, 13(10), e1525996. https://doi.org/10.1080/15592324.2018.1525996

Tiwari, A. K., Sharma, P. K., Khan, M. S., Snehi, S. K., Raj, S. K., & Rao, G. P. (2010). Molecular detection and identification of Tomato leaf curl New Delhi virus isolate causing yellow mosaic disease in Bitter gourd (Momordica charantia), a medicinally important plant in India. Medicinal Plants-International Journal of Phytomedicines and Related Industries, 2(2), 117-123. https://doi.org/10.5958/j.0975-4261.2.2.018

Tiwari, A. K., Snehi, S. K., Singh, R., Raj, S. K., Rao, G. P., & Sharma, P. K. (2012). Molecular identification and genetic diversity among six Begomovirus isolates affecting cultivation of cucurbitaceous crops in Uttar Pradesh, India. Archives of Phytopathology and Plant Protection, 45(1), 62-72. https://doi.org/10.1080/03235400903458803

Valkonen, J. (1998). Virus disease control in plants using natural and engineered resistance, and some considerations regarding biosafety. Current, 17, 51-55.

Varma, A., & Malathi, V. G. (2003). Emerging geminivirus problems: a serious threat to crop production. Annals of Applied Biology, 142(2), 145-164. https://doi.org/10.1111/j.1744-7348.2003.tb00240.x

Varma, P. M. (1955). Ability of the whitefly to carry more than one virus simultaneously. Current Science, 24, 317-318.

Xie, Y., Wu, P., Liu, P., Gong, H., & Zhou, X. (2010). Characterization of alphasatellites associated with monopartite begomovirus/betasatellite complexes in Yunnan, China. Virology Journal, 7, 178. https://doi.org/10.1186/1743-422X-7-178

Yadav, M., Jain, S., Tomar, R., Prasad, G. B. K. S., & Yadav, H. (2010). Medicinal and biological potential of pumpkin: an updated review. Nutrition Research Reviews, 23(2), 184-190. https://doi.org/10.1017/S0954422410000107

Zaidi, S. S. E. A., Tashkandi, M., Mansoor, S., & Mahfouz, M. M. (2016). Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Frontiers in Plant Science, 7, 1673. https://doi.org/10.3389/fpls.2016.01673

Zrachya, A., Kumar, P. P., Ramakrishnan, U., Levy, Y., Loyter, A., Arazi, T., Lapidot, M., & Gafni, Y. (2007). Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus. Transgenic Research, 16, 385-398. https://doi.org/10.1007/s11248-006-9042-2

Published

28-10-2024

How to Cite

Kushvaha, R. P., Kushwaha, C., & Snehi, S. K. (2024). Begomovirus disease of pumpkin crop in India and its management strategies possibility: a review. Journal of Scientific Agriculture, 8, 69–78. https://doi.org/10.25081/jsa.2024.v8.9053

Issue

Section

Articles