Wilt disease symptoms in red leaf lettuce (Lactuca sativa L.) after inoculated with Trichoderma longibrachiatum
DOI:
https://doi.org/10.25081/jsa.2023.v7.8271Keywords:
Lactuca sativa, Lettuce, Plant wilt disease, Trichoderma longibrachiatumAbstract
Trichoderma is a fungal genus that is widely reported to cause beneficial impacts to crop plants but rarely detriment. The present study was conducted to assess the effect of inoculation of Trichoderma longibrachiatum strain UPMT14 on red leaf lettuce (Lactuca sativa L.) under growth room conditions. A culture of UPMT14 was grown on potato dextrose broth to produce inoculum. This liquid inoculum was injected through the stem of red leaf lettuce seedlings 22 days old with five replications, and then plant growth progress was monitored for vegetative responses. Red leaf lettuce plants began to exhibit foliar symptoms on day 36, such as chlorosis, wilt, and drying out, before total collapsed on day 45 in comparison to untreated control red leaf lettuce plants. In conclusion, the wilting incidence in red leaf lettuce was observed after T. longibrachiatum inoculation. Further studies are needed in future to understand the pathogenesis of T. longibrachiatum.
Downloads
References
Al-Rubaiey, W. L., & Al-Juboory, H. H. (2020). Molecular identification of Trichoderma longibrachiatum causing green mold in Pleurotus eryngii culture media. Plant Archives, 20(1), 181-184.
Aydoğdu, M., Kurbetli, İ., Kitapçı, A., & Sülü, G. (2020). Aggressiveness of green mould on cultivated mushroom (Agaricus bisporus) in Turkey. Journal of Plant Diseases and Protection, 127, 695-708. https://doi.org/10.1007/s41348-020-00328-8
Clement, A., Verfaille, T., Lormel, C., & Jaloux, B. (2015). A new colour vision system to quantify automatically foliar discolouration caused by insect pests feeding on leaf cells. Biosystems Engineering, 133, 128-140. https://doi.org/10.1016/j.biosystemseng.2015.03.007
Colavolpe, M. B., Mejía, S. J., & Albertó, E. (2015). Efficiency of treatments for controlling Trichoderma spp during spawning in cultivation of Lignicolous mushrooms. Brazilian Journal of Microbiology, 45(4), 1263-1270. https://doi.org/10.1590/S1517-83822014000400017
Deng, Z., & Cao, L. (2017). Fungal endophytes and their interactions with plants in phytoremediation: A review. Chemosphere, 168, 1100-1106. https://doi.org/10.1016/j.chemosphere.2016.10.097
DOA. (2018). Crop Statistic (Food Crop Sub-Sector) (pp. 64). Department of Agriculture of Peninsular Malaysia (DOA).
Hatvani, L., Antal, Z., Manczinger, L., Szekeres, A., Druzhinina, I. S., Kubicek, C. P., Nagy, A., Nagy, E., Vágvölgyi, C., & Kredics, L. (2007). Green mold diseases of Agaricus and Pleurotus spp. Are caused by related but phylogenetically different Trichoderma species. Phytopathology, 97(4), 532-537. https://doi.org/10.1094/PHYTO-97-4-0532
Hatvani, L., Sabolić, P., Kocsubé, S., Kredics, L., Czifra, D., Vágvölgyi, C., Kaliterna, J., Ivić, D., Đermić, E., & Kosalec, I. (2012). The first report on mushroom green mould disease in Croatia. Arhiv Za Higijenu Rada i Toksikologiju, 63(4), 481-487. https://doi.org/10.2478/10004-1254-63-2012-2220
Kim, M. J., Moon, Y., Tou, J. C., Mou, B., & Waterland, N. L. (2016). Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis, 49, 19-34. https://doi.org/10.1016/j.jfca.2016.03.004
Kusari, P., Spiteller, M., Kayser, O., & Kusari, S. (2014). Recent advances in research on Cannabis sativa L. endophytes and their prospect for the pharmaceutical industry. In R. Kharwar, R. Upadhyay, N. Dubey & R. Raghuwanshi (Eds.), Microbial Diversity and Biotechnology in Food Security (pp.3-15) New Delhi, India: Springer. https://doi.org/10.1007/978-81-322-1801-2_1
Miyazaki, K., Tsuchiya, Y., & Okuda, T. (2009). Specific PCR assays for the detection of Trichoderma harzianum causing green mold disease during mushroom cultivation. Mycoscience, 50(2), 94-99. https://doi.org/10.1007/S10267-008-0460-2
Modrzewska, M., Bryła, M., Kanabus, J., & Pierzgalski, A. (2022). Trichoderma as a biostimulator and biocontrol agent against Fusarium in the production of cereal crops: Opportunities and possibilities. Plant Pathology, 71(7), 1471-1485. https://doi.org/10.1111/ppa.13578
Nicosia, M. G. L. D., Mosca, S., Mercurio, R., & Schena, L. (2014). Dieback of Pinus nigra seedlings caused by a strain of Trichoderma viride. Plant Disease, 99(1), 44-49. https://doi.org/10.1094/PDIS-04-14-0433-RE
Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A., & Vega, F. E. (2007). Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological Research, 111(6), 748-757. https://doi.org/10.1016/j.mycres.2007.03.006
Rodrigo-García, J., Navarrete-Laborde, B. A., Rosa, L. A. de la, Alvarez-Parrilla, E., Núñez-Gastélum, J. A. (2019). Effect of Harpin protein as an elicitor on the content of phenolic compounds and antioxidant capacity in two hydroponically grown lettuce (Lactuca sativa L.) varieties. Food Science and Technology, 39(1), 72-77. https://doi.org/10.1590/fst.20417
Samuels, G. J., Dodd, S. L., Gams, W., Castlebury, L. A., & Petrini, O. (2002). Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 94(1), 146-170.
Sarsaiya, S., Jain, A., Jia, Q., Fan, X., Shu, F., Chen, Z., Zhou, Q., Shi, J., & Chen, J. (2020). Molecular identification of endophytic fungi and their pathogenicity evaluation against Dendrobium nobile and Dendrobium officinale. International Journal of Molecular Sciences, 21(1), 316. https://doi.org/10.3390/ijms21010316
Sarsaiya, S., Jia, Q., Fan, X., Jain, A., Shu, F., Chen, J., Lu, Y., & Shi, J. (2019). First report of leaf black circular spots on Dendrobium nobile caused by Trichoderma longibrachiatum in Guizhou Province, China. Plant Disease, 103(12), 3275. https://doi.org/10.1094/PDIS-03-19-0672-PDN
Shah, S., Nasreen, S., & Sheikh, P. A. (2012). Cultural and morphological characterization of Trichoderma spp. associated with green mold disease of Pleurotus spp. in Kashmir. Research Journal of Microbiology, 7(2), 139-144.
Shi, M., Gu, J., Wu, H., Rauf, A., Emran, T. B., Khan, Z., Mitra, S., Aljohani, A. S. M., Alhumaydhi, F. A., & Al-Awthan, Y. S., Bahattab, O., Thiruvengadam, M., & Suleria, H. A. R. (2022). Phytochemicals, Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce - A Comprehensive Review. Antioxidants, 11(6), 1158. https://doi.org/10.3390/antiox11061158
Singh, S. K., Sharma, V. P., Sharma, S. R., Kumar, S., & Tiwari, M. (2006). Molecular characterization of Trichoderma taxa causing green mould disease in edible mushrooms. Current Science, 90(3), 427-431.
Wang, G., Cao, X., Ma, X., Guo, M., Liu, C., Yan, L., & Bian, Y. (2016). Diversity and effect of Trichoderma spp. associated with green mold disease on Lentinula edodes in China. MicrobiologyOpen, 5(4), 709-718. https://doi.org/10.1002/mbo3.364
Yun, S.-H., Lee, S. H., So, K.-K., Kim, J.-M., & Kim, D.-H. (2016). Incidence of diverse dsRNA mycoviruses in Trichoderma spp. causing green mold disease of shiitake Lentinula edodes. FEMS Microbiology Letters, 363(19), fnw220. https://doi.org/10.1093/femsle/fnw220
Zavatta, M., Muramoto, J., Milazzo, E., Koike, S., Klonsky, K., Goodhue, R., & Shennan, C. (2021). Integrating broccoli rotation, mustard meal, and anaerobic soil disinfestation to manage verticillium wilt in strawberry. Crop Protection, 146, 105659. https://doi.org/10.1016/j.cropro.2021.105659
Zhang, C., Wang, W., Xue, M., Liu, Z., Zhang, Q., Hou, J., Xing, M., Wang, R., & Liu, T. (2021). The combination of a biocontrol agent Trichoderma asperellum SC012 and hymexazol reduces the effective fungicide dose to control fusarium wilt in cowpea. Journal of Fungi, 7(9), 685. https://doi.org/10.3390/jof7090685
Published
How to Cite
Issue
Section
Copyright (c) 2023 Muhammad Iqbal Nul Hakim Mohd Sazili, Fitri Ab Aziz Zakry, Franklin Ragai Kundat
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.