Response of cowpea germplasm to bacterial blight in Uganda

Authors

  • Gauden Nantale College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
  • Peter Wasswa College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
  • Richard Tusiime College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
  • Edgar Muhumuza College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
  • Isaac Onziga Dramadri College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
  • Pamela Paparu National Agricultural Research Organization - National Crop Resources Research Institute, Namulonge, Uganda

DOI:

https://doi.org/10.25081/jsa.2023.v7.8061

Keywords:

Cowpea, Bacterial blight, disease response, Uganda

Abstract

Cowpea (Vigna unguiculata (L.) walp) is a legume crop mainly grown on small scale in low–input farming systems in Uganda. Cowpea bacterial blight (CoBB) disease caused by Xanthomonas axonopodis pv. vignicola (Burkh.) Dye is increasingly becoming a major hindrance to cowpea productivity. Sixty-four cowpea genotypes were evaluated for their response to bacterial blight disease (CoBB). Field experiments were carried out during the first and second rainy seasons using alpha lattice design with three replications. Data on disease incidence and severity, grain yield, days to 50% flowering, number of seeds per pod, pod length, number of peduncles per plant, and number of branches per plant were collected. Disease severity and incidence data was used to determine relative Area Under Disease Progress Curve (rAUDPC). Results showed significant differences (P ≤ 0.001) among the genotypes for rAUDPC in each season. The rAUDPC across the seasons indicated that genotypes NE 32, WC 32A, WC 26 and NE 44 with rAUDPC values ranging from 0.22 to 0.26 were resistant to CoBB whereas genotypes NE 31 and NE 40 with rAUDPC values 0.44 and 0.46 respectively were susceptible. The rAUDPC did not show any significant correlation with days to 50% flowering, yield and its components. This study suggested that the genotypes NE 32, WC 32A, NE 44, and WC 26 be used as prospective parents in breeding initiatives to develop bacterial blight-resistant varieties due to their high yields and resistance to CoBB.

Downloads

Download data is not yet available.

References

Agbicodo, A. C. M. E. (2009). Genetic analysis of abiotic and biotic resistance in cowpea [Vigna unguiculata (L.) Walp.]. Doctoral Dissertation, Wageningen University.

Ajeigbe, H. A., Singh, B. B., & Emechebe, A. M. (2008). Field evaluation of improved cowpea lines for resistance to bacterial blight, virus and striga under natural infestation in the West African Savannas. African Journal of Biotechnology, 7(20), 3563-3568.

Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10), 3523-3644. https://doi.org/10.1093/jxb/ers100

Bisikwa, J., Kawooya, R., Ssebuliba, J. M., Ddungu, S. P., Biruma, M., & Okello, D. K. (2014). Effects of plant density on the performance of local and elite cowpea [Vigna unguiculata L. (Walp)] varieties in Eastern Uganda. African Journal of Applied Agricultural Sciences and Technologies, 1(1), 28-41.

Bohra, A., Pandey, M. K., Jha, U. C., Singh, B., Singh, I. P., Datta, D., Chaturvedi, S. K., Nadarajan, N., & Varshney, R. K. (2014). Genomics assisted breeding in four major pulse crops of developing countries: present status and prospects. TAG. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik, 127(6), 1263-1291. https://doi.org/10.1007/s00122-014-2301-3

Bua, B., Adipala, E., & Opio, F. (1998). Screening cowpea germplasm for resistance to bacterial blight in Uganda. International Journal of Pest Management, 44, 185-189. https://doi.org/10.1080/096708798228293

Ddamulira, G., Santos, C. A. F., Alanyo, M., Ramathani, I., & Maphosa, M. (2017). Maturity, protein content and yield stability of cowpea in Uganda. South African Journal of Plant and Soil, 34(4), 255-261. https://doi.org/10.1080/02571862.2016.1274919

Edema, R., Adipala, E., & Florini, D. A. (1997). Influence of season and cropping system on the occurrence of cowpea diseases in Uganda. Plant Disease, 81(5), 465-468. https://doi.org/10.1094/PDIS.1997.81.5.465

FAO. (2009). How to feed the world in 2050. Retrieved from http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_feed_ the_world_in_2050.pdf

FAO. (2012). Food and Agricultural Organization of the United Nation, FAO Statistical Database. Retrieved from http://faostat.fao.org

FAOSTAT. (2010). Food and Agriculture Organization of the United Nations. Retrieved from http://faostat.fao.org

Forbes, G., Pérez, W., & Andrade Piedra, J. L. (2014). Field assessment of resistance in potato to Phytophthora infestans: International Cooperators Guide. Lima, Peru: International Potato Center. https://doi.org/10.4160/9789290604402

Fry, W. E. (1978). Quantification of general resistance of potato cultivars and fungicide effects for integrated control of potato late blight. Phytopathology, 68, 1650-1655.

Hall, A. E. (2004). Breeding for adaptation to drought and heat in cowpea. European Journal of Agronomy, 21, 447-454. https://doi.org/10.1016/j.eja.2004.07.005

IAASTD. (2009). Agriculture at a crossroads. The International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD), Island Press.

Jackai, L. E. N., & Singh, S. R. (1988). Screening techniques for host plant resistance to insect pests of cowpea. Tropical Grain Legume Bulletin, 35, 2-18.

Lambot, C. (2002). Industrial potential of cowpea. In C. A. Fatokun, S. A. Tarawali, B. B. Singh, P. M. Kormawa & M. Tamo (Eds.), Challenges and Opportunities for enhancing sustainable cowpea production. Proceedings of the World Cowpea Conference III (pp. 4-8). International Institute of Tropical Agriculture (IITA).

Lima-Primo, H. E., Halfeld-Vieira, B. D. A., Nechet, K. D. L., de Souza, G. R., Mizubuti, E. S., & de Oliveira, J. R. (2019). Influence of bacterial blight on different phenological stages of cowpea. Scientia Horticulturae, 255, 44-51. https://doi.org/10.1016/j.scienta.2019.05.012

Manggoel, W., Uguru, M. I., Ndam, O. N., & Dasbak, M. A. (2012). Genetic variability, correlation and path coefficient analysis of some yield components of ten cowpea (Vigna unguiculata (L.) Walp) accessions. Journal of Plant Breeding and Crop Science, 4(5), 80-86.

Mbong, G. A., Akem, C. N., Alabi, O., Emechebe, A. M., & Alegbejo, M. D. (2010). Effect of sowing date on the incidence, apparent infection rate and severity of scab on cowpea. Asian Journal of Agricultural Sciences, 2(2), 63-68.

McKnight Foundation Collaborative Crops Research. (2013). Improving Food Security through Participatory Development of High Yielding and Pest Resistant Cowpea Varieties in Uganda. Annual Progress REPORT- Narrative. McKnight Foundation Collaborative Crops Research Project No: 09-480.

Miesho, B. (2019). Genetics of Cowpea Resistance to Bruchid (Callosobruchus maculatus Fab.). Doctoral Dissertation. Makerere University.

Mundt, C. C. (2014). Durable resistance: a key to sustainable management of pathogens and pests. Infection, Genetics and Evolution, 27, 446-455. https://doi.org/10.1016/j.meegid.2014.01.011

NARO Report. (2014). Demand Analysis Report - Republic of Uganda. Retrieved from https://www.manage.gov.in/ftf-itt/demand/Uganda.pdf

Nema, S., & Babber A. (2000). Occurrence of Phytophthora blight of cowpea in Madhya Pradesh and evaluation of genotypes for field resistance. Indian Phytopathology, 53(3), 314-315.

Nwosu, D. J., Olatunbosun, B. D., & Adetiloye, I. S. (2013). Genetic Variability, Heritability and Genetic Advance in Cowpea Genotypes in Two Agro-ecological Environments. Greener Journal of Biological Sciences, 3(5), 202-207. https://doi.org/10.15580/GJBS.2013.5.061313672

Okechukwu, R. U., & Ekpo, E. J. A. (2004). Sources of resistance to cowpea bacterial blight disease in Nigeria. Journal of phytopathology, 152(6), 345-351. https://doi.org/10.1111/j.1439-0434.2004.00852.x

Okechukwu, R. U., Ekpo, E. J. A., & Florini, D. A. (2000). Yield depression in cowpea cultivars infected with Xanthomonas campestris pv. vignicola in Sudan savanna of Nigeria. Tropical Agricultural Research and Extension, 3(2), 98-101.

Orawu, M., Melis, R., Laing, M., & Derera J. (2013). Genetic inheritance of resistance to cowpea aphid-borne mosaic virus in cowpea. Euphytica, 189, 191-201. https://doi.org/10.1007/s10681-012-0756-3

Piquerez, S. J. M., Harvey, S. E., Beynon, J. L., & Ntoukakis, V. (2014). Improving crop disease resistance: lessons from research on Arabidopsis and tomato. Frontiers in Plant Science, 5, 671. https://doi.org/10.3389/fpls.2014.00671

Romanus, K. G., Hussein, S., & Mashela, W. P. (2008). Combining ability analysis and association of yield and yield components among selected cowpea lines. Euphytica, 162, 205-210. https://doi.org/10.1007/s10681-007-9512-5

Sanginga, N., Dashiell, K. E., Diels, J., Vanlauwe, B., Lyasse, O., Carsky, R. J., Tarawali, S., Asafo-Adjei, B., Menkir, A., Schulz, S., Singh, B. B., Chikoye, D., Keatinge, D., & Ortiz, R. (2003). Sustainable resource management coupled to resilient germplasm to provide new intensive cereal–grain–legume–livestock systems in the dry savanna. Agriculture, Ecosystems & Environment, 100(2-3), 305-314. https://doi.org/10.1016/S0167-8809(03)00188-9

Shi, A., Buckley, B., Mou, B., Motes, D., Morris, J. B., Ma, J., Xiong, H., Qin, J., Yang, W., Chitwood, J., Weng, Y., & Lu, W. (2016). Association analysis of cowpea bacterial blight resistance in USDA cowpea germplasm. Euphytica, 208, 143-155. https://doi.org/10.1007/s10681-015-1610-1

Singh, B. B. (2005). Cowpea (Vigna unguiculata (L.) walp). In R. J. Singh & P. P. Jauhar (Eds.), Genetic Resources, Chromosome Engineering, and Crop Improvement (pp. 117-162), Boca Raton, US: CRC Press. https://doi.org/10.1201/9780203489284

Singh, B. B., Ajeigbe, H. A., Tarawali, S. A., Fernandez-Rivera, S., & Abubakar, M. (2003). Improving the production and utilization of cowpea as food and fodder. Field Crops Research, 84(1-2), 169- 177. https://doi.org/10.1016/S0378-4290(03)00148-5

Stern, N. (2007). The economics of climate change: The Stern review. Cambridge, UK. Cambridge University Press.

Timko, M. P., Ehlers, J. D., & Roberts, P. A. (2007). Cowpea. In C. Kole (Ed.), Genome Mapping and Molecular Breeding in Plants: Pulses, Sugar and Tuber Crops (Vol. 3, pp. 49-68) Berlin: Springer.

Tumwegamire, S., Rubaihayo, P. R., & Adipala, E. (1998). Genetics of resistance to Sphaceloma scab of cowpea. African Crop Science Journal, 6(3), 227-240. https://doi.org/10.4314/acsj.v6i3.27796

Withanage, D. L. (2005). Characterization and evaluation of cowpea (Vigna unguiculata [L.] Walp). Germplasm. PG Thesis. University of Agricultural Sciences.

World Bank. (2008). World Development Report 2008: Agriculture for development. Washington, DC.

Yuen, J. E., & Forbes, G. A. (2009). Estimating the level of susceptibility to Phytophthora infestans in potato genotypes. Phytopathology, 99(6), 782-786. https://doi.org/10.1094/phyto-99-6-078

Published

07-02-2023

How to Cite

Nantale, G., Wasswa, P., Tusiime, R., Muhumuza, E., Dramadri, I. O., & Paparu, P. (2023). Response of cowpea germplasm to bacterial blight in Uganda. Journal of Scientific Agriculture, 7, 17–27. https://doi.org/10.25081/jsa.2023.v7.8061

Issue

Section

Articles