Plant defense mechanism in combined stresses - cellular and molecular perspective

Authors

  • Suphia Rafique Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India
  • Syed Naved Quadri Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India
  • M. Z. Abdin Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India

DOI:

https://doi.org/10.25081/jpsp.2024.v10.8790

Keywords:

Plant resistance, Abiotic/biotic stresses, Signaling, Antioxidant, Hormones and TFs

Abstract

The various abiotic stresses negatively influence the growth and development of plants. However, recent predictions of global climate change models have amplified the chances that plants will encounter new and more combinations of abiotic and biotic stresses. The plants adopt different strategies in combined stresses as compared to a single stress. This stress combination can be antagonist or synergistic depending on the interaction of stresses. Plants are sessile, to resists these stresses they activate defense mechanism which are complex cellular and molecular responses under combined stress conditions. At the cellular level, various kinds of biomolecules are produced that have positive and negative effects against stresses. The basic cellular process generates more reactive oxygen species (ROS) in stress conditions and causes extensive damage and inhibition of photosynthesis. Various plant hormones are involved in cellular activations to adapt the plants under stressful conditions. Further, to overcome the adverse effects of stress, the plant activates several molecular cascade mechanisms involving kinases, transcription factors, micro-RNAs, heat shock proteins, epigenetic changes. Besides, plants developed a robust signal perception and transduction mechanism to cope effectively with unfavorable conditions. Phytohormone plays a crucial role in signaling that is activated in response to combined stress conditions and in individual stress which are activated in response to abiotic and biotic stress combinations. Besides, ROS is also involved in signaling. They control a broad range of biological processes and have a conserved signaling network. Therefore, the crosstalk between different signaling pathways activates defense mechanisms and helps in the survival of plants from the various combined abiotic and biotic stress conditions.

Downloads

Download data is not yet available.

References

AbuQamar, S., Luo, H., Laluk, K., Mickelbart, M. V., & Mengiste, T. (2009). Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. The Plant Journal, 58(2), 347-360. https://doi.org/10.1111/j.1365-313X.2008.03783.x

Acevedo, F. E., Rivera-Vega, L. J., Chung, S. H., Ray, S., & Felton, G. W. (2015). Cues from chewing insects - the intersection of DAMPs, HAMPs, MAMPs and effectors. Current Opinion in Plant Biology, 26, 80-86. https://doi.org/10.1016/j.pbi.2015.05.029

Achuo, E. A., Prinsen, E., & Höfte, M. (2006). Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathology, 55(2), 178-186. https://doi.org/10.1111/j.1365-3059.2006.01340.x

Adie, B. A. T., Pérez-Pérez, J., Pérez-Pérez, M. M., Godoy, M., Sánchez-Serrano, J.-J., Schmelz, E. A., & Solano, R. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. The Plant Cell, 19(5), 1665-1681. https://doi.org/10.1105/tpc.106.048041

Ahmed, I. M., Dai, H., Zheng, W., Cao, F., Zhang, G., Sun, D., & Wu, F. (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 63, 49-60. https://doi.org/10.1016/j.plaphy.2012.11.004

Amtmann, A., Troufflard, S., & Armengaud, P. (2008). The effect of potassium nutrition on pest and disease resistance in plants. Physiologia Plantarum, 133(4), 682-691. https://doi.org/10.1111/j.1399-3054.2008.01075.x

Andersen, E. J., Ali, S., Byamukama, E., Yen, Y., & Nepal, M. P. (2018). Disease Resistance Mechanisms in Plants. Genes, 9(7), 339. https://doi.org/10.3390/genes9070339

Anderson, J. P., Badruzsaufari, E., Schenk, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., Maclean, D. J., Ebert, P. R., & Kazan, K. (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. The Plant Cell, 16(12), 3460-3479. https://doi.org/10.1105/tpc.104.025833

Andreasson, E., & Ellis, B. (2010). Convergence and specificity in the Arabidopsis MAPK nexus. Trends in Plant Science, 15(2), 106-113. https://doi.org/10.1016/j.tplants.2009.12.001

Asselbergh, B., Achuo, A. E., Höfte, M., & Van Gijsegem, F. (2008a). Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Molecular Plant Pathology, 9(1), 11-24. https://doi.org/10.1111/j.1364-3703.2007.00437.x

Asselbergh, B., De Vleesschauwer, D., & Höfte, M. (2008b). Global switches and fine-tuning-ABA modulates plant pathogen defense. Molecular Plant-Microbe Interactions, 21(6), 709-719. https://doi.org/10.1094/MPMI-21-6-0709

Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10), 3523-3543. https://doi.org/10.1093/jxb/ers100

Atkinson, N. J., Jain, R., & Urwin, P. E. (2015). The response of plants to simultaneous biotic and abiotic stress. In R. Mahalingam (Eds.), Combined stresses in plants (pp.181-201) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-07899-1

Atkinson, N. J., Lilley, C. J., & Urwin, P. E. (2013). Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiology, 162(4), 2028-2041. https://doi.org/10.1104/pp.113.222372

Balchin, D., Hayer-Hartl, M., & Hartl, F. U. (2016). In vivo aspects of protein folding and quality control. Science, 353(6294), aac4354. https://doi.org/10.1126/science.aac4354

Bartel, B., & Bartel, D. P. (2003). MicroRNAs: at the root of plant development?. Plant Physiology, 132(2), 709-717. https://doi.org/10.1104/pp.103.023630

Benešová, M., Hola, D., Fischer, L., Jedelský, P. L., Hnilička, F., Wilhelmová, N., Rothova, O., Kočová, M., Prochazkova, D., Honnerova, J., Fridrichova, L., & Hniličková, H. (2012). The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration?. PLoS One, 7(6), e38017. https://doi.org/10.1371/journal.pone.0038017

Besseau, S., Li, J., & Palva, E. T. (2012). WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. Journal of Experimental Botany, 63(7), 2667-2679. https://doi.org/10.1093/jxb/err450

Bidzinski, P., Ballini, E., Ducasse, A., Michel, C., Zuluaga, P., Genga, A., Chiozzotto, R., & Morel, J. B. (2016). Transcriptional Basis of Drought-Induced Susceptibility to the Rice Blast Fungus Magnaporthe oryzae. Frontiers in Plant Science, 7, 1558. https://doi.org/10.3389/fpls.2016.01558

Bowler, C., & Fluhr, R. (2000). The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends in Plant Science, 5(6), 241-246. https://doi.org/10.1016/S1360-1385(00)01628-9

Camejo, D., Guzmán-Cedeño, Á., & Moreno, A. (2016). Reactive oxygen species, essential molecules, during plant–pathogen interactions. Plant Physiology and Biochemistry, 103, 10-23. https://doi.org/10.1016/j.plaphy.2016.02.035

Cao, F. Y., Yoshioka, K., & Desveaux, D. (2011). The roles of ABA in plant–pathogen interactions. Journal of Plant Research, 124, 489-499. https://doi.org/10.1007/s10265-011-0409-y

Capiati, D. A., País, S. M., & Téllez-Iñón, M. T. (2006). Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signalling. Journal of Experimental Botany, 57(10), 2391-2400. https://doi.org/10.1093/jxb/erj212

Carter, A. H., Chen, X. M., Garland-Campbell, K., & Kidwell, K. K. (2009). Identifying QTL for high-temperature adult-plant resistance to stripe rust (Puccinia striiformis f. sp. tritici) in the spring wheat (Triticum aestivum L.) cultivar ‘Louise’. Theoretical and Applied Genetics, 119, 1119-1128. https://doi.org/10.1007/s00122-009-1114-2

Chen, J., Xu, W., Velten, J., Xin, Z., & Stout, J. (2012). Characterization of maize inbred lines for drought and heat tolerance. Journal of Soil and Water Conservation, 67(5), 354-364. https://doi.org/10.2489/jswc.67.5.354

Chen, W., Provart, N. J., Glazebrook, J., Katagiri, F., Chang, H. S., Eulgem, T., Mauch, F., Luan, S., Zou, G., Whitham, S. A., & Budworth, P. R. (2002). Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. The Plant Cell, 14(3), 559-574. https://doi.org/10.1105/tpc.010410

Chinnusamy, V., Schumaker, K., & Zhu, J-K. (2004). Molecular genetic perspectives on cross‐talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany, 55(395), 225-236. https://doi.org/10.1093/jxb/erh005

Chinnusamy, V., Zhu, J., & Zhu, J. K. (2007). Cold stress regulation of gene expression in plants. Trends in Plant Science, 12(10), 444-451. https://doi.org/10.1016/j.tplants.2007.07.002

Choudhary, A., Gupta, A., Ramegowda, V., & Senthil-Kumar, M. (2017). Transcriptomic changes under combined drought and nonhost bacteria reveal novel and robust defenses in Arabidopsis thaliana. Environmental and Experimental Botany, 139, 152-164. https://doi.org/10.1016/j.envexpbot.2017.05.005

Cui, H., Tsuda, K., & Parker, J. E. (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annual Review of Plant Biology, 66, 487-511. https://doi.org/10.1146/annurev-arplant-050213-040012

Dash, P. K., Rai, R., Rai, V., & Pasupalak, S. (2018). Drought Induced Signaling in Rice: Delineating Canonical and Non-canonical Pathways. Frontiers in Chemistry, 6, 264. https://doi.org/10.3389/fchem.2018.00264

Demirevska, K., Simova‐Stoilova, L., Fedina, I., Georgieva, K., & Kunert, K. (2010). Response of oryzacystatin I transformed tobacco plants to drought, heat and light stress. Journal of Agronomy and Crop Science, 196(2), 90-99. https://doi.org/10.1111/j.1439-037X.2009.00396.x

Driedonks, N., Xu, J., Peters, J. L., Park, S., & Rieu, I. (2015). Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Frontiers in Plant Science, 6, 999. https://doi.org/10.3389/fpls.2015.00999

Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866-1875. https://doi.org/10.1105/tpc.105.033589

Fraire-Velázquez, S., Rodríguez-Guerra, R., & Sánchez-Calderón, L. (2011). Abiotic and Biotic Stress Response Crosstalk in Plants. In A. Shanker & B. Venkateswarlu (Eds.), Abiotic Stress Response in Plants - Physiological, Biochemical and Genetic Perspectives (pp. 1-26) London, UK: IntechOpen. https://doi.org/10.5772/23217

Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9(4), 436-442. https://doi.org/10.1016/j.pbi.2006.05.014

Goellner, K., & Conrath, U. (2008). Priming: it’s all the world to induced disease resistance. European Journal of Plant Pathology, 121, 233-242. https://doi.org/10.1007/s10658-007-9251-4

Golldack, D., Li, C., Mohan, H., & Probst, N. (2014). Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 5, 151. https://doi.org/10.3389/fpls.2014.00151

Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60(10), 2827-2838. https://doi.org/10.1093/jxb/erp080

Grodzki, W., McManus, M., Knı́žek, M., Meshkova, V., Mihalciuc, V., Novotny, J., Turčani, M., & Slobodyan, Y. (2004). Occurrence of spruce bark beetles in forest stands at different levels of air pollution stress. Environmental Pollution, 130(1), 73-83. https://doi.org/10.1016/j.envpol.2003.10.022

Hodge, A. (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162(1), 9-24. https://doi.org/10.1111/j.1469-8137.2004.01015.x

Hu, X., Wu, L., Zhao, F., Zhang, D., Li, N., Zhu, G., Li, C., & Wang, W. (2015). Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress. Frontiers in Plant Science, 6, 298. https://doi.org/10.3389/fpls.2015.00298

Humbert, S., Subedi, S., Cohn, J., Zeng, B., Bi, Y. M., Chen, X., Zhu, T., McNicholas, P. D., & Rothstein, S. J. (2013). Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genomics, 14, 3. https://doi.org/10.1186/1471-2164-14-3

IPCC (2014): Summary for policymakers. In: Climate Change 2014: Impacts,Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and New York: Cambridge University Press.

Janda, M., Lamparová, L., Zubíková, A., Burketová, L., Martinec, J., & Krčková, Z. (2019). Temporary heat stress suppresses PAMP‐triggered immunity and resistance to bacteria in Arabidopsis thaliana. Molecular Plant Pathology, 20(7), 1005-1012. https://doi.org/10.1111/mpp.12799

Joshi, V., Joung, J.-G., Fei, Z., & Jander, G. (2010). Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids, 39, 933-947. https://doi.org/10.1007/s00726-010-0505-7

Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J., & Greenberg, J. T. (2009). Priming in systemic plant immunity. Science, 324(5923), 89-91. https://doi.org/10.1126/science.1170025

Király, L., Hafez, Y. M., Fodor, J., & Király, Z. (2008). Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. The Journal of General Virology, 89(3), 799-808. https://doi.org/10.1099/vir.0.83328-0

Knight, H., & Knight, M. R. (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends in Plant Science, 6(6), 262-267. https://doi.org/10.1016/S1360-1385(01)01946-X

Koussevitzky, S., Suzuki, N., Huntington, S., Armijo, L., Sha, W., Cortes, D., Shulaev, V., & Mittler, R. (2008). Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. The Journal of Biological Chemistry, 283(49), 34197-34203. https://doi.org/10.1074/jbc.M806337200

Kovtun, Y., Chiu, W. L., Tena, G., & Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences, 97(6), 2940-2945. https://doi.org/10.1073/pnas.97.6.2940

Kůdela, V. (2009). Potential impact of climate change on geographic distribution of plant pathogenic bacteria in Central Europe. Plant Protection Science, 45(10), S27-S32. https://doi.org/10.17221/2832-PPS

Kulcheski, F. R., de Oliveira, L. F., Molina, L. G., Almerão, M. P., Rodrigues, F. A., Marcolino, J., Barbosa, J. F., Stolf-Moreira, R., Nepomuceno, A. L., Marcelino-Guimarães, F. C., Abdelnoor, R. V., Nascimento, L. C., Carazzolle, M. F., Pereira, G. A., & Margis, R. (2011). Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics, 12, 307. https://doi.org/10.1186/1471-2164-12-307

Kumar, V., Khare, T., Sharma, M., & Wani, S. H. (2017). ROS-induced signaling and gene expression in crops under salinity stress. In M. I. R. Khan & N. A. Khan (Eds.), Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress (pp. 159-184) Singapore: Springer. https://doi.org/10.1007/978-981-10-5254-5_7

Kusajima, M., Yasuda, M., Kawashima, A., Nojiri, H., Yamane, H., Nakajima, M., Akutsu, K., & Nakashita, H. (2010). Suppressive effect of abscisic acid on systemic acquired resistance in tobacco plants. Journal of General Plant Pathology, 76, 161-167. https://doi.org/10.1007/s10327-010-0218-5

Kuźniak, E. (2010). The ascorbate–gluathione cycle and related redox signals in plant–pathogen interactions. In N. A. Anjum, M.-T. Chan & S. Umar (Eds.), Ascorbate-glutathione pathway and stress tolerance in plants (pp. 115-136) Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-90-481-9404-9_4

Laloi, C., Apel, K., & Danon, A. (2004). Reactive oxygen signalling: the latest news. Current Opinion in Plant Biology, 7(3), 323-328. https://doi.org/10.1016/j.pbi.2004.03.005

Li, Z., Zhang, L., Wang, A., Xu, X., & Li, J. (2013). Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PloS One, 8(1), e54880. https://doi.org/10.1371/journal.pone.0054880

Luck, J., Spackman, M., Freeman, A., Tre˛bicki, P., Griffiths, W., Finlay, K., & Chakraborty, S. (2011). Climate change and diseases of food crops. Plant Pathology, 60(1), 113-121. https://doi.org/10.1111/j.1365-3059.2010.02414.x

Luo, M., Liang, X. Q., Dang, P., Holbrook, C. C., Bausher, M. G., Lee, R. D., & Guo, B. Z. (2005). Microarraybased screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Science, 169(4), 695-703. https://doi.org/10.1111/j.1365-3059.2010.02414.x

Mauch-Mani, B., & Mauch, F. (2005). The role of abscisic acid in plant-pathogen interactions. Current Opinion in Plant Biology, 8(4), 409-414. https://doi.org/10.1016/j.pbi.2005.05.015

Melotto, M., Zhang, L., Oblessuc, P. R., & He, S. Y. (2017). Stomatal Defense a Decade Later. Plant Physiology, 174(2), 561-571. https://doi.org/10.1104/pp.16.01853

Miller, G., & Mittler, R. (2006). Could heat shock transcription factors function as hydrogen peroxide sensors in plants?. Annals of Botany, 98(2), 279-288. https://doi.org/10.1093/aob/mcl107

Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: challenges and perspectives. Annual Review of Plant Biology, 61, 443-462. https://doi.org/10.1146/annurev-arplant-042809-112116

Mohr, P. G., & Cahill, D. M. (2003). Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Functional Plant Biology, 30(4), 461-469. https://doi.org/10.1071/FP02231

Mohr, P. G., & Cahill, D. M. (2007). Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Functional & Integrative Genomics, 7(3), 181-191. https://doi.org/10.1007/s10142-006-0041-4

Nakashima, K., & Yamaguchi‐Shinozaki, K. (2006). Regulons involved in osmotic stress‐responsive and cold stress‐responsive gene expression in plants. Physiologia Plantarum, 126(1), 62-71. https://doi.org/10.1111/j.1399-3054.2005.00592.x

Nejat, N., & Mantri, N. (2017). Plant immune system: crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Current Issues in Molecular Biology, 23(1), 1-6. https://doi.org/10.21775/cimb.023.001

Nenova, V., & Bogoeva, I. (2014). Separate and combined effects of excess copper and Fusarium culmorum infection on growth and antioxidative enzymes in wheat (Triticum aestivum L.) plants. Journal of Plant Interactions, 9(1), 259-266. https://doi.org/10.1080/17429145.2013.820359

Newton, A. C., Johnson, S. N., & Gregory, P. J. (2011). Implications of climate change for diseases, crop yields and food security. Euphytica, 179, 3-18. https://doi.org/10.1007/s10681-011-0359-4

Niculaes, C., Abramov, A., Hannemann, L., & Frey, M. (2018). Plant Protection by Benzoxazinoids-Recent Insights into Biosynthesis and Function. Agronomy, 8(8), 143. https://doi.org/10.3390/agronomy8080143

Nostar, O., Ozdemir, F., Bor, M., Turkan, I., & Tosun, N. (2013). Combined effects of salt stress and cucurbit downy mildew (Pseudoperospora cubensis Berk. and Curt. Rostov.) infection on growth, physiological traits and antioxidant activity in cucumber (Cucumis sativus L.) seedlings. Physiological and Molecular Plant Pathology, 83, 84-92. https://doi.org/10.1016/j.pmpp.2013.05.004

Ohnishi, T., Sugahara, S., Yamada, T., Kikuchi, K., Yoshiba, Y., Hirano, H. Y., & Tsutsumi, N. (2005). OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes & Genetic Systems, 80(2), 135-139. https://doi.org/10.1266/ggs.80.135

Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits. Frontiers in Plant Science, 8, 537. https://doi.org/10.3389/fpls.2017.00537

Pandey, P., Ramegowda, V., & Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Frontiers in Plant Science, 6, 723. https://doi.org/10.3389/fpls.2015.00723

Pearce, G., Moura, D. S., Stratmann, J., & Ryan Jr, C. A. (2001). RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proceedings of the National Academy of Sciences, 98(22), 12843-12847. https://doi.org/10.1073/pnas.201416998

Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5(5), 308-316. https://doi.org/10.1038/nchembio.164

Potters, G., Horemans, N., & Jansen, M. A. K. (2010). The cellular redox state in plant stress biology - A charging concept. Plant Physiology and Biochemistry, 48(5), 292-300. https://doi.org/10.1016/j.plaphy.2009.12.007

Prasch, C. M., & Sonnewald, U. (2013). Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiology, 162(4), 1849-1866. https://doi.org/10.1104/pp.113.221044

Prasch, C. M., & Sonnewald, U. (2015). Signaling events in plants: stress factors in combination change the picture. Environmental and Experimental Botany, 114, 4-14. https://doi.org/10.1016/j.envexpbot.2014.06.020

Qin, F., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2011). Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant & Cell Physiology, 52(9), 1569-1582. https://doi.org/10.1093/pcp/pcr106

Rafique, S., Abdin, M. Z., & Alam, W. (2019). Response of combined abiotic stresses on maize (Zea mays L.) inbred lines and interaction among various stresses. Maydica, 64(3), 22.

Ramegowda, V., & Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology, 176, 47-54. https://doi.org/10.1016/j.jplph.2014.11.008

Ramegowda, V., Senthil-Kumar, M., Ishiga, Y., Kaundal, A., Udayakumar, M., & Mysore, K. S. (2013). Drought stress acclimation imparts tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana. International Journal of Molecular Sciences, 14(5), 9497-9513. https://doi.org/10.3390/ijms14059497

Ramu, V. S., Paramanantham, A., Ramegowda, V., Mohan-Raju, B., Udayakumar, M., & Senthil-Kumar, M. Transcriptome analysis of sunflower genotypes with contrasting oxidative stress tolerance reveals individual-and combined-biotic and abiotic stress tolerance mechanisms. PloS One, 11(6), e0157522. https://doi.org/10.1371/journal.pone.0157522

Ranf, S. (2018). Pattern Recognition Receptors—Versatile Genetic Tools for Engineering Broad-Spectrum Disease Resistance in Crops. Agronomy, 8(8), 134. https://doi.org/10.3390/agronomy8080134

Rasmussen, S., Barah, P., Suarez-Rodriguez, M. C., Bressendorff, S., Friis, P., Costantino, P., Bones, A. M., Nielsen, H. B., & Mundy, J. (2013). Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiology, 161(4), 1783-1794. https://doi.org/10.1104/pp.112.210773

Reddy, A. S. N., Ali, G. S., Celesnik, H., & Day, I. S. (2011). Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. The Plant Cell, 23(6), 2010-2032. https://doi.org/10.1105/tpc.111.084988

Rivero, R. M., Mestre, T. C., Mittler, R., Rubio, F., Garcia-Sanchez, F., & Martinez, V. (2014). The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant, Cell & Environment, 37(5), 1059-1073. https://doi.org/10.1111/pce.12199

Rizhsky, L., Liang, H., & Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 130(3), 1143-1151. https://doi.org/10.1104/pp.006858

Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134(4), 1683-1696. https://doi.org/10.1104/pp.103.033431

Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J., & von Korff, M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of Experimental Botany, 64(11), 3201-3212. https://doi.org/10.1093/jxb/ert158

Sandermann, H. (2004). Molecular ecotoxicology: from man-made pollutants to multiple environmental stresses. In H. Sandermann (Eds.), Molecular Ecotoxicology of Plants: Ecological Studies (pp. 1-16). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-08818-0_1

Satapathy, P., Achary, V. M. M., & Panda, B. B. (2012). Aluminum-induced abiotic stress counteracts Fusarium infection in Cajanus cajan (L.) Millsp. Journal of Plant Interactions, 7(2), 121-128. https://doi.org/10.1080/17429145.2011.584133

Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., & Shinozaki, K. (2001). Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. The Plant Cell, 13(1), 61-72. https://doi.org/10.1105/tpc.13.1.61

Seo, J. K., Wu, J., Lii, Y., Li, Y., & Jin, H. (2013). Contribution of small RNA pathway components in plant immunity. Molecular Plant-Microbe Interactions, 26(6), 617-625. https://doi.org/10.1094/MPMI-10-12-0255-IA

Sewelam, N., Brilhaus, D., Bräutigam, A., Alseekh, S., Fernie, A. R., & Maurino, V. G. (2020). Molecular plant responses to combined abiotic stresses put a spotlight on unknown and abundant genes. Journal of Experimental Botany, 71(16), 5098-5112. https://doi.org/10.1093/jxb/eraa250

Sewelam, N., Kazan, K., & Schenk, P. M. (2016). Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. Frontiers in Plant Science, 7, 187. https://doi.org/10.3389/fpls.2016.00187

Shah, K., Chaturvedi, V., & Gupta, S. (2019). Climate change and abiotic stress-induced oxidative burst in rice. In M. Hasanuzzaman, M. Fujita, K. Nahar & J. K. Biswas (Eds.), Advances in rice research for abiotic stress tolerance (pp. 505-535) Sawston, UK: Woodhead Publishing. https://doi.org/10.1016/B978-0-12-814332-2.00025-3

Sham, A., Al-Azzawi, A., Al-Ameri, S., Al-Mahmoud, B., Awwad, F., Al-Rawashdeh, A., Iratni, R., & AbuQamar, S. (2014). Transcriptome analysis reveals genes commonly induced by Botrytis cinerea infection, cold, drought and oxidative stresses in Arabidopsis. PloS One, 9(11), e113718. https://doi.org/10.1371/journal.pone.0113718

Shigeoka, S., & Maruta, T. (2014). Cellular redox regulation, signaling, and stress response in plants. Bioscience, Biotechnology, and Biochemistry, 78(9), 1457-1470. https://doi.org/10.1080/09168451.2014.942254

Shin, R., & Schachtman, D. P. (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proceedings of the National Academy of Sciences of the United States of America, 101(23), 8827-8832. https://doi.org/10.1073/pnas.0401707101

Shin, R., Berg, R. H., & Schachtman, D. P. (2005). Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant & Cell Physiology, 46(8), 1350-1357. https://doi.org/10.1093/pcp/pci145

Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221-227. https://doi.org/10.1093/jxb/erl164

Spoel, S. H., & Dong, X. (2008). Making sense of hormone crosstalk during plant immune responses. Cell Host & Microbe, 3(6), 348-351. https://doi.org/10.1016/j.chom.2008.05.009

Stefani, G., & Slack, F. J. (2008). Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 9, 219-230. https://doi.org/10.1038/nrm2347

Stout, M. J., Fidantsef, A. L., Duffey, S. S., & Bostock, R. M. (1999). Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiological and Molecular Plant Pathology, 54(3-4), 115-130. https://doi.org/10.1006/pmpp.1998.0193

Sun, W., Bernard, C., van de Cotte, B., Van Montagu, M., & Verbruggen, N. (2001). At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. The Plant Journal, 27(5), 407-415. https://doi.org/10.1046/j.1365-313x.2001.01107.x

Suzuki N, Koussevitzky SH, Mittler RO, Miller GA. ROS and redox signalling in the response of plants to abiotic stress. Plant, cell & environment. 2012 Feb;35(2):259-70. https://doi.org/10.1111/j.1365-3040.2011.02336.x

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. The New Phytologist, 203(1), 32-43. https://doi.org/10.1111/nph.12797

Swindell W. R. (2006). The association among gene expression responses to nine abiotic stress treatments in Arabidopsis thaliana. Genetics, 174(4), 1811-1824. https://doi.org/10.1534/genetics.106.061374

Szittya, G., Silhavy, D., Molnár, A., Havelda, Z., Lovas, A., Lakatos, L., Bánfalvi, Z., & Burgyán, J. (2003). Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. The EMBO Journal, 22(3), 633-640. https://doi.org/10.1093/emboj/cdg74

Takasaki, H., Maruyama, K., Kidokoro, S., Ito, Y., Fujita, Y., Shinozaki, K., Yamaguchi-Shinozaki, K., & Nakashima, K. (2010). The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molecular Genetics and Genomics, 284(3), 173-183. https://doi.org/10.1007/s00438-010-0557-0

Thakur, M., & Sohal, B. S. (2013). Role of elicitors in inducing resistance in plants against pathogen infection: a review. International Scholarly Research Notices, 2013, 762412. https://doi.org/10.1155/2013/762412

Thaler, J. S., & Bostock, R. M. (2004). Interactions between abscisic‐acid‐mediated responses and plant resistance to pathogens and insects. Ecology, 85(1), 48-58. https://doi.org/10.1890/02-0710

Thomma, B. P. H. J., Nürnberger, T., Joosten, M. H. A. J. (2011). Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The Plant Cell, 23(1), 4-15. https://doi.org/10.1105/tpc.110.082602

Todaka, D., Nakashima, K., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice, 5, 6. https://doi.org/10.1186/1939-8433-5-6

Ton, J., Flors, V., & Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends in Plant Science, 14(6), 310-317. https://doi.org/10.1016/j.tplants.2009.03.006

Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M. N., Metraux, J. P., Mauch-Mani, B. (2005). Dissecting the β-aminobutyric acid–induced priming phenomenon in Arabidopsis. The Plant Cell, 17(3), 987-999. https://doi.org/10.1105/tpc.104.029728

Torres, M. A., & Dangl, J. L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 8(4), 397-403. https://doi.org/10.1016/j.pbi.2005.05.014

Tsuda, K., & Somssich, I. E. (2015). Transcriptional networks in plant immunity. The New Phytologist, 206(3), 932-947. https://doi.org/10.1111/nph.13286

Verma, G., Srivastava, D., Tiwari, P., & Chakrabarty, D. (2019). ROS modulation in crop plants under drought stress. In M. Hasanuzzaman, V. Fotopoulos, K. Nahar, M. Fujita (Eds.), Reactive oxygen, nitrogen and sulfur species in plants: Production, metabolism, signaling and defense mechanisms (pp. 311-336) New York, US: John Wiley & Sons Ltd. https://doi.org/10.1002/9781119468677.ch13

Virdi, A. S., Singh, S., Singh, P. (2015). Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Frontiers in Plant Science, 6, 809. https://doi.org/10.3389/fpls.2015.00809

von Koskull-Döring, P., Scharf, K.-D., & Nover, L. (2007). The diversity of plant heat stress transcription factors. Trends in Plant Science, 12(10), 452-457. https://doi.org/10.1016/j.tplants.2007.08.014

Wang, A., Yu, X., Mao, Y., Liu, Y., Liu, G., Liu, Y., & Niu, X. (2015). Overexpression of a small heat‐shock‐protein gene enhances tolerance to abiotic stresses in rice. Plant Breeding, 134(4), 384-393. https://doi.org/10.1111/pbr.12289

Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244-252. https://doi.org/10.1016/j.tplants.2004.03.006

Wang, Y., Bao, Z., Zhu, Y., & Hua, J. (2009). Analysis of temperature modulation of plant defense against biotrophic microbes. Molecular Plant-Microbe Interactions, 22(5), 498-506. https://doi.org/10.1094/MPMI-22-5-0498

Xin, M., Wang, Y., Yao, Y., Xie, C., Peng, H., Ni, Z., & Sun, Q. (2010). Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biology, 10, 123. https://doi.org/10.1186/1471-2229-10-123

Xiong, L., & Yang, Y. (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. The Plant Cell, 15(3), 745-759. https://doi.org/10.1105/tpc.008714

Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., Asami, T., Maruyama-Nakashita, A., Kudo, T., Shinozaki, K., Yoshida, S., & Nakashita, H. (2008). Antagonistic interaction between systemic acquired resistance and the abscisic acid–mediated abiotic stress response in Arabidopsis. The Plant Cell, 20(6), 1678-1692. https://doi.org/10.1105/tpc.107.054296

Yoshida, T., Mogami, J., & Yamaguchi-Shinozaki, K. (2014). ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology, 21,133-139. https://doi.org/10.1016/j.pbi.2014.07.009

Zhu, Y., Qian, W., & Hua, J. (2010). Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathogens, 6(4), e1000844. https://doi.org/10.1371/journal.ppat.1000844

Zou, J., Liu, C., Liu, A., Zou, D., & Chen, X. (2012). Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. Journal of Plant Physiology, 169(6), 628-635. https://doi.org/10.1016/j.jplph.2011.12.014

Published

10-07-2024

How to Cite

Rafique, S. ., S. N. Quadri, and M. Z. Abdin. “Plant Defense Mechanism in Combined Stresses - Cellular and Molecular Perspective”. Journal of Plant Stress Physiology, vol. 10, July 2024, pp. 33-42, doi:10.25081/jpsp.2024.v10.8790.

Issue

Section

Articles