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INTRODUCTION

The recent forecast by climate change models (IPPC, 2014) 
has augmented the chances of simultaneous incidence of two 
or more stresses in combination in the field. Abiotic stresses 
like; drought and heat, waterlogging, and salinity along with the 
biotic stresses prevail in most parts of the globe. In combined 
stress conditions, interaction of various stresses, determined 
the plant response and however, they are different from the 
response of single stress (Atkinson et al., 2013; Pandey et al., 
2015; Ramu et al., 2016). However, some responses are unique 
while others are common that depend on the interaction of 
stresses (Pandey et al., 2017).  The interaction between the 
combined stresses is not always undesirable but sometimes 
the two stress factors have a positive impact on each other 
for example under combined stress (drought x waterlogging) 
applied simultaneously, an increase in plant height, leaf area 
and stem diameter were observed (Rafique et al., 2019). On 
the other hand, under simultaneous drought and heat stress 
the soil becomes drier, which further intensifies the drought 

and leads to higher reduction in crop yields  (Rizhsky et  al., 
2004).  Similarly, a stress combination of abiotic/biotic 
interaction harms plants such as higher temperatures leads 
to bacterial diseases  (Kůdela, 2009). Therefore, the range of 
different types of stress interactions is influenced by nature, 
severity and duration of stress (Pandey et al., 2017). Plants adopt 
diverse defense mechanisms for their survival, reproduction and 
adapt them in adverse conditions (Pieterse et al., 2009).  Plant’s 
ability to perceive stress early on time and efficient response 
is a critical component of plant defense. Once identified, 
plants inherent basal defense mechanisms activated complex 
signaling mechanisms of defense that vary from one stress 
to another stress combinations (Chinnusamy et al., 2004; 
AbuQamar et al., 2009; Andreasson & Ellis, 2010). In response 
to combined stresses, certain ion channels and kinase cascades 
are activated (Fraire-Velázquez et al., 2011), reactive oxygen 
species (ROS) and hormones such as ethylene (ET), salicylic 
acid (SA), ABA, and jasmonic acid (JA) (Laloi et al., 2004; 
Spoel & Dong, 2008) brought changes in the genetic, makeup 
is reprogrammed and produce adequate defense responses 
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and enhance plant tolerance mechanism (Fujita et al., 2006). 
Research work done to understand the plants responses to 
single abiotic or biotic stresses (Qin et al., 2011; Todaka et al., 
2012; Thakur & Sohal, 2013) In present scenario, increase in 
greenhouse gases led to change the climatic conditions and crops 
are facing frequent incidence of two or more abiotic and biotic 
stresses at the same time. Therefore, in combined stresses plants 
show specific responses. However, their response is completely 
different from the individual stress response and unpredictable 
(Atkinson & Urwin, 2012).

Field grown crops are different from plants grown in 
controlled conditions. The influence of one stress on defense 
response is more compared to other stress. Moreover, plants 
differential sensitivity relies on the plants developmental stage 
(Mittler & Blumwald, 2010). Besides, other factors that can effect 
are interaction of stresses on plant species, it may base on the 
specific stress combination and on the degree of simultaneous 
occurrence (Rasmussen et al., 2013; Ramegowda et al., 2013). 
The nature of interaction of combined stresses (abiotic/abiotic 
or abiotic/biotic) is not always negative but sometimes the two 
stress factors have positive impact on each other for examples 
under combined stress (drought x waterlogging) applied 
simultaneously, had increased plant height, leaf area and stem 
diameter (Rafique et al., 2019). However, in drought and heat 
stress simultaneously may evaporate water from the soil this 
may intensify the drought and crop yield potentials decline 
more and led to huge loss (Rizhsky et al., 2004). A powerful 
regulatory system in plants acclimatizes them to the changing 
environments. Plants defending themselves in multiple stress 
conditions shows more resistance towards one stress remarkably 
(Bowler & Fluhr, 2000), perhaps showing cross tolerance 
(Capiati et al., 2006; Suzuki et al., 2012). An r example, of 
cross tolerance was seen in tomato plants after receiving 
wound salt tolerance increases also, tomato plants infected 
by Pseudomonas syringae pv. tomato (Pst) induces systemic 
resistance to the herbivore insect Helicoverpa zea (Stout et al., 
1999; Capiati et al., 2006). Climate change impact on plant-
pest interactions has been the subject of numerous recent 
studies and reviews (Chakarbaty, 2005; Gregory et al., 2009; 
Luck et al., 2011; Newton et al., 2011). Abiotic stresses affect 
the severity of pathogen infection on plants. These stresses 
influence both positive and negative ways, for example, salinity 
increased tomato susceptibility to Phytophthora infestans 
and Pseudomonas syringae (Thaler  &  Bostock, 2004). This 
may suggest that between abiotic-biotic stress combinations, 
pathogen infection accelerated by abiotic stresses (Luo et al., 
2005; Király et al., 2008). Therefore, pathogen susceptibility 
increases under abiotic stress may be due to change brought 
in hormonal balance, defense capability reduces, and down-
regulation of primary metabolism stress (Mohr & Cahill, 2003; 
Prasch & Sonnewald, 2013). Similar reports by Prasch and 
Sonnewald (2013) shows that combination of drought and heat 
stress increased the susceptibility of Arabidopsis plants to Turnip 
mosaic virus infections. This may be due to suppression of 
defense responses to the biotic stress. Whereas, fungal pathogen 
(Sclerotinia sclerotiorum) infects the drought acclimated 
N. benthamiana it shows fewer symptoms (Ramegowda et al., 
2013) this may be due to higher endogenous ABA and ROS 

levels which suppress and minimize the effect of pathogen 
infection (Fujita et al., 2006; Mauch-Mani & Mauch, 2005). 
Another study shows that, salinity enhanced resistance against 
Botrytis cinerea (Achuo et al., 2006). In contrast, abiotic and 
biotic stresses manifested negative interactions also drought 
stress increased the antagonism of the fungus M. oryzae. 
However, both cold and heat stresses are found to lower the 
resistance of plants to biotic stresses showing the negative 
impact between abiotic/biotic stresses (Atkinson & Urwin, 
2012). According to Rasmussen et al. (2013), the severity 
and complexity of combined stress conditions determine 
the number of differentially expressed genes. In triple 
stress, the transcriptomic responses are much more severe, 
where, Arabidopsis plants are subjected to virus infection in 
combination with drought and/or heat, (Prasch & Sonnewald 
2013). Another study, demonstrates the molecular multiple 
stresses response interaction (drought, heat, and salinity), 
down-regulates the highly transcribed genes and cell cycle 
genes but increases protein degradation. It has been concluded 
that in hostile environments, Arabidopsis moves to a reserve 
state in which growth was arrested but enhanced molecular 
mechanisms for survival (Sewelam et al., 2020). As plants are 
exposed to abiotic stressors, they emit certain chemicals called 
phytohormones. These chemicals, which include ethylene 
(ET), jasmonic acid (JA), and abscisic acid (ABA), build up and 
trigger signaling cascades that control transcriptional responses 
downstream (Acevedo et al., 2015). According to Verma et al. 
(2019), additional key actors in signaling include ABA, ROS, 
MAPK, and Ca2+. These players also trigger different signaling 
cascades that cause cross-tolerance to a variety of abiotic factors. 
Similarly, drought in rice triggers a signaling cascade that results 
in the expression of early responsive and late responsive genes. 
The primary class of genes codes for substances that give plants 
protection and osmo-tolerance, while the second type modifies 
the target genes involved in signal transduction (Dash et al., 
2018). On the other hand, complex multicomponent signaling 
networks in plants enable tolerance to coupled abiotic stress 
conditions like drought and salinity, which restores cellular 
homeostasis and increases survival (Golldack et al., 2014). This 
review has covered the defense mechanism at the cellular and 
molecular level in the context of combined abiotic and biotic 
stresses, as well as detailed discussion on the significance of the 
signaling cascade in response to defense mechanisms.

DEFENSE MECHANISM UNDER CELLULAR 
PERSPECTIVE IN COMBINED STRESSES

Relevance of Biomolecules

Biomolecules comprising sugars, amino acids, Osmoprotectants 
(proline, glycine, betaine), hormones, redox-active molecules 
such as ascorbate, glutathione (GSH), NADP(H), small 
proteins (thioredoxin, glutaredoxins), and a variety of different 
metabolites like; phenolics, amino acids, carotenoids, and 
tocopherol are among the various biomolecules. Thus, sucrose 
replaced proline as the primary osmoprotectant in the event 
of heat stress and drought. According to Rizhsky et al. (2004), 
several plant species that experience heat stress, drought, or 
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both exhibit changes in their metabolite profiles, which include 
intermediates of the Krebs cycle, carbohydrates, polyols, amino 
acids, and osmoprotectants (Suzuki et al., 2014). Saline and heat 
conditions together promote the buildup of osmoprotectants in 
tomato plants, similarly glycine betaine and trehalose, protect 
plants from this particular combined stress (Rivero et al., 2014). 
The type of stress imposed determines which suitable solutes are 
produced, according to metabolite profile analysis of combined 
stresses. Additionally, the plants changed their metabolism to 
a survival state with reduced productivity when exposed to 
combined stress conditions (Sewelam et al., 2020). Secondary 
plant metabolites from grasses called benzoxazinoids (BXs) have 
a strong potential to function as a chemical defense against 
biotic stressors from a variety of kingdoms. A comprehensive 
overview of the production, metabolism, and biological 
functions of BXs is given by Niculaes et al. (2018). They discuss 
the wide range of biological activities of BXs, such as their 
toxic and health-promoting effects on insects. Studies provide 
additional proof of the crosstalk between biotic and abiotic stress 
resistance. Consequences of exogenous chemical application 
that, through a process known as priming, increase plant defense 
responses (Goellner & Conrath, 2008). For instance, applying 
the non-protein amino acid β-aminobutyric acid (β-ABA) to 
Arabidopsis thaliana increases the plant’s resistance to a variety 
of stresses, such as heat, drought, and salinity stress, as well as 
to fungi that are both biotrophic and necrotrophic (Ton et al., 
2005). According to Benešová et al. (2012) and Balchin et al. 
(2016), stress-responsive biomolecules like heat shock proteins 
function as molecular chaperones in the correct folding, 
unfolding, and transport of proteins as well as the breakdown 
of non-native proteins. HSPs are important in several stress 
scenarios. For instance, HSP70 expression increased in tobacco 
when exposed to heat stress, but it increased significantly 
when subjected to both heat and drought stress (Rizhsky et al., 
2002). The accumulation and reduction-oxidation states of a 
number of redox-active substances affect the redox state of cells. 
Ascorbate, glutathione (GSH), NADP(H), tiny proteins that 
function as antioxidants like glutaredoxins and thioredoxins, 
as well as a variety of other metabolites such phenolics, 
amino acids, carotenoids, and tocopherols, are their primary 
constituents. They serve to preserve cellular homeostasis by 
acting as a buffer and sensor in response to environmental 
disturbances. According to Potters et al. (2010), they serve as a 
major integrator of ROS, energy, and metabolic regulation both 
under stress and in ideal conditions.

Role of Osmo-protectants in Defense Mechanism

The stress combination that could have a major effect on 
agriculture is summarized in Mittler’s “stress matrix,” which 
highlights the stress combination as a novel state of abiotic stress 
in plants (Miller & Mittler, 2006). Much work has been done on 
Drought and heat compared to other combinations. Drought 
and heat stress combination have a greater detrimental effect on 
plant growth and development than either stress alone causes 
(Rizhsky et al., 2004; Chen et al., 2012). This includes tobacco, 
Arabidopsis, sorghum, maize, barley, and other grasses. When 
plants experience both the heat and drought stress, the effects 
are more severe; under heat stress, photosynthetic rate and 

stomatal conductance decreases, and higher leaf temperature 
was observed. However, compared to drought-tolerant cultivars, 
drought-sensitive cultivars displayed more changes in these 
parameters (Rollins et al., 2013). Furthermore, the combined 
effects of heat and drought stress increased the buildup of 
proline and malondialdehyde. Heat stress decreases leaf relative 
water content, photosynthesis, and reduced chlorophyll content. 
Furthermore, metabolic profiling showed that plants gained 
proline and other carbohydrates including maltose and glucose 
when exposed to combined drought and heat stress. According 
to Rizhsky et al. (2004), sucrose thus took the position of 
proline as the main osmo-protectant during a combined heat 
and drought stress. The metabolic profile of different plant 
species changes in response to drought, heat stress and their 
combination, including, osmoprotectants, carbohydrates, 
polyols, amino acids, and Krebs cycle intermediates (Suzuki 
et al., 2014). A combination of salinity and heat stress enhances 
the accumulation of osmoprotectants such as glycine betaine 
and trehalose in tomato plants, thus play an important role 
in protecting plants against this stress combination (Rivero 
et al., 2014). Analysis of metabolite profile in combined stresses 
indicated that metabolic profile revealed that production of 
specific compatible solutes depends on the nature of the stress 
applied under combined stresses. Moreover, plants metabolism 
shifted to a survival state characterized by low productivity 
(Sewelam et al., 2020).

Antioxidant Defense Mechanism Under Combined 
Stresses

In conditions of drought, heat, and their combination, 
antioxidant defense mechanisms are crucial. According to 
Koussevitzky et al. (2008), cytosolic ascorbate peroxidase1 
(APX1) protein accumulated, and plants deficient in APX1 were 
more susceptible to this combination of stresses than plants 
of the wild type. Two genotypes of barley Different responses 
were seen in Tibetan wild barley (XZ5-tolerant to drought, 
XZ16-tolerant to salinity and Al), and cultivated barley (Salinity 
tolerant cv CM72) to combined stress conditions of salinity 
and drought. In XZ5 and XZ16, callose content and chitinase 
activity, Sucrose synthase (SuSy) SPS, and acid invertase 
were higher. But in combined stress (D+S), phenylalanine 
ammonia-  lyase (PAL) and cinnamyl alcohol dehydrogenase 
(CAD) activity rise in XZ5, except all other enzymes (Ahmed 
et al., 2015). Transgenic tobacco plants expressed the cysteine 
protease inhibitor oryzacystatin I (OC-I), decreased H2O2 
accumulation, and increased glutathione peroxidase activity 
(GPX) when grown in drought, heat, and high light conditions. 
Demirevska et al. (2010) concluded that the expression of 
OC-I in tobacco leads to the protection of the antioxidant 
enzyme GPX under combined stresses. Moreover, salt and 
drought stress in rice improves by overexpressing OsHsp17.0 
and OsHsp23.7 (Zou et al., 2012). With small HSPs to multiple 
stresses, a similar pattern was noted (Wang et al., 2015). 
Additionally, Sun et al. (2001) observed that in Arabidopsis 
overexpression of HSP17.6 had improved tolerance to salinity 
and dry conditions. Additionally, according to certain research, 
the protective enzyme activities are positively regulated by 
HSP gene expression. According to Driedonks et al. (2015), in 
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Arabidopsis increased SOD activity was found by overexpressing 
HSP17.8, while, HSP16.9 overexpression in tobacco increased 
POD, CAT, and SOD enzyme activities.

Importance of Nutrients in Defense Mechanism

The nutrient is crucial for detecting and communicating events. 
Plants’ morphological and physiological reactions are changed by 
nutrient deficiencies (Hodge, 2004). When roots are deprived of 
nitrogen, phosphorus, and potassium, they frequently produce 
reactive oxygen species (ROS) (Shin et al., 2005). Furthermore, 
Shin and Schachtman (2004) demonstrated that ROS may 
be a part of a signal cascade in the roots of plants that have 
experienced a potassium shortage and that the production of 
ROS by a single NADPH oxidase is crucial in the reaction of 
plants to potassium deprivation. When a pathogen is present 
or nutrients are lacking, roots or tubers can also experience an 
oxidative burst (Torres & Dangl, 2005; Shin et al., 2005).

MOLECULAR PERSPECTIVE

Transcriptomic Studies on Defense Response Under 
Combined Stresses

Abiotic or biotic stresses change the expression of genes 
(Chinnusamy et al., 2007; Shinozaki & Yamaguchi-Shinozaki, 
2007); however, when a plant is under multiple stressors, 
its molecular response frequently exhibits an overlapping 
pattern. These stress-inducible genes translate important 
regulatory proteins like transcription factors, protein kinases, 
and phosphatases, as well as those involved in direct stress 
protection, synthesising osmoprotectants, detoxifying enzymes, 
and transporter proteins. Swindell (2006) analyzed the 
transcriptome response in Arabidopsis to nine different abiotic 
stresses such as cold, osmotic, salt, drought, genotoxic stress, UV 
light, oxidative stress, wounding, and heat. Each stress regulates 
67 common genes, suggesting that there was a universal 
component of the response to each condition. While; exposure 
of Arabidopsis and tobacco to simultaneous heat and drought 
stress combinations led to a new pattern of gene expression 
(Rizhsky et al., 2002, 2004). Similarly, in a microarray profiling 
experiment nitrogen and water limitation suggest that several 
genes differentially expressed under low nitrogen were very 
low, whereas the various water stress treatments affect a wide 
number of genes. Chronic nitrogen and transient drought also 
influence expression of some genes. The interaction between 
nitrogen and water dynamically influences gene expression 
(Humbert et al., 2013). Also, Sewelam et al. (2020) investigated 
single, double, and triple combinations of salt, osmotic, and 
heat stresses on Arabidopsis. The major effect of heat was on 
global gene expression and metabolite level in combination with 
other stresses. The combination of heat stress causes a strong 
reduction in the transcription of genes coding for abundant 
photosynthetic proteins and cell life cycle proteins, while, 
genes for protein degradation are up-regulated. Koussevitzky 
et al. (2008) found that tolerance of Arabidopsis plants under 
combined drought and heat stress depends on the Apx1 gene. 
However, APX1-deficient mutant (apx1) was significantly more 

sensitive to the stress combination than the wild type, it might 
be suggested that cytosolic APX1 has a role in acclimatization 
of plants to a combined drought and heat stress. The genes 
specifically regulated by two stresses in Arabidopsis encodes 
for heat shock proteins (HSPs), proteases, lipid biosynthesis 
enzymes, and starch degrading enzymes, also MYB TFs, 
protein kinases, and defense proteins involved in protection 
against oxidative stress (Rizhsky et al., 2004). A  noticeable 
difference was found in the gene expression profile of fungal 
hyphae under drought and control (well-watered) conditions 
(Bidzinski et al., 2016). The relationships between pathogens 
and drought were addressed in many studies (Ramegowda & 
Senthil-Kumar, 2015; Choudhury et al., 2017). A combination 
of water deficit and nematode stress activates a unique program 
of gene expression among them, 50 genes specifically multiple-
stress-regulated. Besides, the major role played by three genes 
AtRALFL 8, AtMGI, AZI1 these genes were involved in cell 
wall remodeling, methionine metabolism, and systemic plant 
immunity (Atkinson et al., 2014) Thus, the study highlighted 
the complex nature of multiple stress responses.

Role of Plant Immune Response Under Combined 
Stresses

Plants are sessile organisms, which evolved specialized 
mechanisms, such as intricate immune response pathways, 
to withstand various stress (Nejat & Mantri, 2017). Plant’s 
vulnerability and adaptive capacity are presented as two sides of 
the same coin. Effective identification of molecular nonspecific 
microbe-associated patterns and host-derived (endogenous) 
damage-associated patterns is essential for quantitative broad-
spectrum immunity against microbial pathogens. Although, 
the cell-surface pattern recognition receptors (PRRs) detect 
these molecules sensitively (Ranf, 2018). The general and 
non-specific defense response is Pathogen/microbe-associated 
molecular patterns (PAMP/MAPM) triggered immunity (PTI) 
which provides immunity not only against the range of biotic 
stresses but also against abiotic stresses. For example, the basal 
defense response in plants is activated by mild drought stress, 
which allows plants to defend against pathogen infection. On 
the contrary, severe drought stress causes leakage of cellular 
nutrients into the apoplast which effectively leads to pathogen 
infection (Ramegowda & Senthil-Kumar, 2015). Effector-
triggered immunity (ETI) is a pathogen-specific plant immune 
response that is triggered by resistance R-genes when pathogen 
virulence factors, or effectors, are released into plant cells (Cui 
et al., 2015). This is also referred to as the hypersensitive response 
(HR) (Thomma et al., 2011). Plant defense response is mediated 
through R-genes. In addition, basal defense response R-genes 
also mediated defense response during combined abiotic/biotic 
interaction. High temperatures decreased the defence response 
of both the resistance R-gene and the basal in Arabidopsis and 
N. benthamiana against Pseudomonas syringae. Plants exposed 
to high temperatures also had a delay in the hypersensitive 
response (HR) mediated by R-genes against Potato virus X 
(PVX) and TMV (Wang et al., 2009). These results show that 
when high temperatures and pathogen infection coexist, both 
basal and R-gene-mediated defence responses are inhibited.
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Role of Hormones, TFs and mi-RNAs Under Combined 
Stresses

Plant hormones have a major role in the synchronisation of 
growth under both favourable and adverse conditions, as well 
as in the regulation of defence responses in the aftermath of 
pathogen invasion. In a combined abiotic and biotic stress 
combination, hormones are important because they influence 
the interaction and antagonistic relationship between the 
signalling pathways of the two stresses (Anderson et al., 2004; 
Asselbergh et al., 2008b; Atkinson & Urwin, 2012). It is also 
recognised that Abscisic Acid (ABA), the main regulator of 
the drought stress response, can change plants’ defences 
against pathogens. Accumulation of ABA in drought stress 
closes stomata and inhibits bacterial invasion through stomata 
(Melotto et al., 2017). On the other hand, ABA inhibits 
the development of defence chemicals such as lignins and 
phenylpropanoids and suppresses systemic acquired resistance 
to infections (Mohr & Cahill, 2007; Kusajima et al. 2010). 
Consequently, ABA can affect a plant’s response to a pathogen 
infection in both good and negative ways. Additionally, Cao 
et al. (2011) investigated the effects of ABA’s antagonistic or 
synergistic interactions with other hormones, including SA, JA, 
and ET, on biotic stress. Anderson et al. (2004) found that high 
ABA levels inhibit ethylene, JA, or SA-mediated signaling, which 
in turn suppresses the expression of defence genes in plants. 
The hormones SA, JA, and ethylene play a significant role in the 
later phases of pathogen infection, even though ABA suppresses 
a variety of defensive chemicals (Asselbergh et al., 2008a; Ton 
et al., 2009). Additionally, hormones and temperatures have an 
impact on the genes that control the defense response during 
biotic stress reactions. SA mediates the defense responses in 
Arabidopsis and Pseudomonas syringe interact at high (28 °C) 
and extreme (37 °C and 42 °C) temperatures (Wang et al., 
2009; Janda et al., 2019). The exogenous administration of 
ABA increased the resistance of Arabidopsis plants to fungal 
diseases, including Alternaria brassicicola, which produces dark 
leaf spot, and Pythium irregulare, which causes damping-off 
(Adie et al., 2007).

Role of Transcription Factors

TFs have multiple roles in the development and growth of 
plants and respond to various abiotic stressors). Under stressful 
conditions, transcription factors (TFs) play a critical function in 
the gene regulatory network by controlling the transcription rate 
through the activation or repression of gene expression (Tsuda & 
Somssich, 2015). Many of the stress combination-specific genes 
here encode transcription factors and other regulatory genes. 
Reports have shown how WRKY transcription factors support 
the biotic and abiotic stress response of plants using ethylene 
signalling, salicylic acid (SA), and jasmonic acid (JA). According 
to Besseau et al. (2012), pathogen- and oxidative stress-induced 
salinity and oxidative stress conditions improved Arabidopsis 
seed germination when AtWRKY30 was overexpressed. Prasch 
and Sonnewald’s (2013) transcriptome analysis of Arabidopsis 
plants exposed to the triple stress combination (heat, drought, 
and virus infection) reveals that 23 transcripts were up-regulated 

when all three stresses were present. Two zinc finger proteins 
and DREB2A are the primary transcripts. Furthermore, in all 
three stress combinations, the R-mediated disease response was 
also inhibited. Therefore, the findings imply that the pathogen-
related signaling network is dependent on abiotic stressors 
that cause the defense response to be deactivated and increase 
plant susceptibility. As a positive regulator, the NAC family of 
transcription factors participates in the defensive response to 
biotic and abiotic stresses (Nakashima et al., 2007). Ohnishi 
et al. (2005), Nakashima et al. (2007) and Takasaki et al. (2010), 
wounding was among the factors that induced the OsNAC6 
gene, (member of the NAC family) in rice. Transgenic rice plants 
that overexpressed OsNAC6 demonstrated enhanced tolerance 
to drought and high salinity, as well as some resistance to the 
hemibiotrophic fungal disease Magnaporthe oryzae, according 
to Nakashima et al. (2007). Recently, Atkinson et al. (2013) 
in transcriptional analysis on Arabidopsis plants exposed to 
drought, nematode infection, or both. The co-occurrence of 
nematode infection and drought resulted in modifications to 
a distinct collection of transcripts. Among them are Azealic 
Acid induced 1 (AZI1), Methionine Gamma Lyase (AtMGL), 
and Rapid Alkalization Factor -LIKE8 (AtRALFL8). Joshi et al. 
(2010) claim that signal peptides generated by AtRALFL8, 
which was induced in roots, may cause cell wall remodeling. 
The expression of the methionine homeostasis gene AtMGL 
was upregulated in leaves under the combined stress conditions. 
It may regulate methionine metabolism, which is critical 
for signaling in a range of stressful circumstances and the 
synthesis of osmolytes (Pearce et al., 2001). Additionally, as 
part of the ABA-induced regulation of pathogen response 
genes, AZI1, which is involved in systemic acquired resistance 
was down-regulated in leaves (Yasuda et al., 2008; Jung et al., 
2009). Nevertheless, additional vital defence molecules that 
regulate the synthesis, folding, assembly, translocation, and 
degradation of proteins are protein chaperones, also referred 
to as molecular chaperones (Wang et al., 2004). The primary 
transcriptional regulators of HSPs are heat shock transcription 
factors (HSFs), which bind to highly conserved motifs of the 
promoter regions of HSP genes known as heat stress-elements 
(HSEs; 5′  -AGAAnnTTCT-3′). Increased resistance to biotic 
and abiotic stressors is the consequence of this (Hu et al., 2015; 
Virdi et al., 2015). The HSPs control both biotic and abiotic 
defence genes. For example, Arabidopsis developed HSPs due to 
necrotrophic fungal infection, cold, dehydration, and oxidative 
stress (Sham et al., 2014). However, Li et al. (2013) observed that 
HsfA3 was upregulated in response to drought and salt stress.

Role of Micro RNAs

Non-coding RNAs known as microRNAs are involved in the 
majority of biological processes in both plants and animals. 
The control of numerous biological processes depends on 
them (Bartel & Bartel, 2003; Stefani & Slack, 2008). Currently, 
research on the functions of miRNAs in the control of biological 
stressors has primarily focused on rice and Arabidopsis. When 
rice plants are infected with the stripe virus (RSV), a large 
number of miRNAs accumulate. The miR160, miR166, and 
miR396 families of miRNAs are among these (Seo et al., 
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2013). Furthermore, Kulcheski et al. (2011) examined the 
pattern of miRNA expression in soybean cultivars susceptible 
and resistant to the Asian soybean rust, Phakopsora pachyrhizi, 
under conditions of drought stress. Numerous miRNAs are 
implicated in the response to both biotic and abiotic challenges, 
even though their expression levels in response to rust infection 
and drought stress were drastically different and contrasting. 
When wheat plants (Erysiphe graminis f. sp. tritici (Egt)) were 
subjected to both circumstances, it was discovered that nine 
miRNAs were co-regulated by heat stress and powdery mildew 
infection (Xin et al., 2010).

SIGNALING AND CROSSTALK IN COMBINED 
ABIOTIC STRESSES AND COMBINED BIOTIC/
ABIOTIC STRESSES

Plants are sessile organisms, on sensing the abiotic and biotic 
stresses they initiate complex signaling pathways on sensing 
combined (abiotic and biotic) stresses. In the first step of 
signaling intercellular Ca2+ concentration changes, later, 
elevated Ca2+ levels activate calcium-dependent protein kinases 
(CDPKs), calcium/calmodulin-dependent protein kinases 
(CCaMKs), or phosphatases. Stress-responsive gene expression 
is regulated by the phosphorylation/dephosphorylation of 
specific transcription factors (Reddy et al., 2011). Signaling 
pathways in response to combined stresses are primarily under 
the control of hormones. ABA is the key hormone produced 
in response to abiotic stresses, and it induces a range of 
downstream processes for tolerance to stress. Whereas, the 
biotic stresses response is produced by antagonism of hormones 
jasmonic acid, salicylic acid, and ethylene. Thus, the signaling 
pathways interact and antagonize each other (Anderson et al., 
2004; Asselbergh et al., 2008b; Atkinson & Urwin, 2012). 
Combined abiotic stresses in plants trigger the overproduction 
of ROS and can pose a hazard to plant cells. However, ROS in 
low or moderate concentrations acts as second messengers in 
ABA intracellular signaling cascades. The main ROS molecule 
i.e. H2O2 is a non-ionic, relatively stable that involves signaling 
(Sewelam et al., 2016; Kumar et al., 2017). ROS regulates abiotic 
stress response and activates signaling in a highly harmonized 
way. ROS activates antioxidants, kinases, defense genes, and 
an influx of Ca2+ ions. Also, phospho-proteins increased the 
synthesis of plant hormones like SA, JA and ethylene. Whereas, 
in biotic stresses, early defense responses are activated such 
as the synthesis of phytoalexins and pathogenesis-related 
proteins, as well as cell wall strengthening/PCD promotion, 
restricting invasion/multiplication/spread of pathogens in plant 
cells (Camejo et al., 2016; Kumar et al., 2017; Andersen et al., 
2018; Shah et al., 2019). However, some reports show that 
antioxidant system in combined abiotic/biotic stresses. manage 
ROS responses The ascorbate-glutathione (AA-GSH) cycle is 
the major ROS regulating process that protects against ROS in 
abiotic and biotic stress factors (Kuźniak, 2010; Foyer & Noctor, 
2011; Shigeoka & Maruta, 2014). For example, in biotic stress 
ascorbate peroxidase (APX) (Satapathy et al., 2012; Nenova 
& Bogoeva, 2014) or APX and glutathione reductase activities 
under salt stress and fungal infection (Nostar et al., 2013). 
Atkinson and Urwin (2012) showed that, in multiple stress 

conditions heat shock factors (HSFs) act as master regulators. 
The heat shock TFs act as molecular sensors, they sense cellular 
changes in ROS and induce the expression of heat shock 
proteins (Miller & Mittler, 2006). As a result of varied stresses, 
distinct combinations of HSPs are generated, which may aid 
in stress adjustment (Rizhsky et al., 2004; von Koskull-Döring 
et al., 2007; Yoshida et al., 2011). The complex process of 
signalling involves mitogen-activated protein kinase cascades, 
cross-talk between various transcription factors, reactive oxygen 
intermediates (ROI), calcium, calmodulins, and the sense of 
stress (Bowler & Fluhr, 2000; Knight & Knight, 2001; Kovtun 
et al., 2000; Chen et al., 2002). Remarkably drought and cold 
activates common stress responses and pathways (Seki et al., 
2001; Chen et al., 2002). According to Bowler and Fluhr (2000), 
Different stresses showed a high degree of overlapping between 
gene clusters. This overlapping may explain the cross-tolerance 
phenomenon,” where one particular stress can induce resistance 
in plants to subsequent stress that is different from the initial 
one. Further, several workers reported that specific abiotic 
stress responsible for enhancing the resistance of plants to 
biotic stress (Sandermann, 2004; Carter et al., 2009). However, 
plants exposed to prolonged duration of abiotic stresses, such as 
drought, extreme temperature, nutrient stress, or salinity, cause 
weakening of plant defenses and enhanced susceptibility to 
biotic stresses (Szittya et al., 2003; Xiong & Yang, 2003; Grodzki 
et al., 2004; Amtmann et al., 2008; Mittler & Blumwald, 2010; 
Zhu et al., 2010)

CONCLUSIONS AND FUTURE PROSPECTS

In response to the combination of stresses, whether abiotic/
abiotic or abiotic/biotic plants activate defense mechanisms 
for growth, development, and acclimation at a cellular and 
molecular level. These abiotic/abiotic stress combinations 
interact synergistically or antagonize each other, however, in 
response, the abiotic/biotic stress combination plays a significant 
role in the plant’s immune response in defense against the 
pathogen infection. However, long-term abiotic stresses weaken 
the defense process and enhance the susceptibility of plants 
to pathogen attack. Thus, under such conditions, plants must 
be exposed to varied stress treatments and select and test the 
traits responsible for resistance. The combination of two or more 
different stresses shows unique and overlapping transcriptomics 
responses compared to individual stresses. The regulation of 
transcription factors, hormones, miRNAs, and Heat shock factors 
have an importance in combined abiotic and biotic response 
and defense mechanisms. Several combined abiotic and biotic 
stresses significantly affect plant growth and development. 
To survive unfavorable environmental conditions plants, 
allocate their resources mainly in the growth, reproduction, 
and defense of the plants. The fine-tuning of complex signal 
transduction pathways integrates and allocates nutrients and 
energy between growth/reproduction and defense-associated 
processes. Whereas, signals are mediated through calcium, 
ROS, and cross-talk between different hormones, kinases, 
receptors as well as transcription factors enables the plants 
to adapt to adverse environmental conditions. In the future 
research work, characterization of different stress conditions is 
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important to understand the intensity of the different stresses. 
Prasch and Sonnewald (2015) described the comparative study 
of multifactorial stress experiments to identify the stress-specific 
and common signaling network and also explained plants’ 
response to stress conditions and activation or deactivation of 
various gene expression programs. These data can be utilised 
to investigate the function of discovered transcription factors, 
kinases, and receptors to gain a better understanding of the key 
gene networks that confer stress tolerance in real-world settings. 
Therefore, developing crops and plants that are stress-resistant 
requires an understanding of the molecular mechanisms 
underlying coupled abiotic and biotic stressors.
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