DSS fertirrigation system: An Italian case study

Authors

  • Gabriele Cosoli LUM Enterprise srl, S.S. 100 - Km.18, Parco il Baricentro, 70010, Bari, Italy
  • Nicola Magaletti LUM Enterprise srl, S.S. 100 - Km.18, Parco il Baricentro, 70010, Bari, Italy
  • Angelo Leogrande LUM Enterprise srl, S.S. 100 - Km.18, Parco il Baricentro, 70010, Bari, Italy
  • Alessandro Massaro LUM Enterprise srl, S.S. 100 - Km.18, Parco il Baricentro, 70010, Bari, Italy & LUM - Libera Università Mediterranea “Giuseppe Degennaro”, S.S. 100 - Km.18, Parco il Baricentro, 70010, Bari, Italy https://orcid.org/0000-0003-1744-783X

DOI:

https://doi.org/10.21839/jfna.2022.v5.7433

Keywords:

Artificial Intelligence, Fertigation, Smart Agriculture, Blockchain, Precision farming

Abstract

The proposed paper deals with a Decision Support System (DSS) conceived for agronomists and farm managers involved in the fertirrigation (FER) process. The DSS has been developed within the Smart District 4.0 (SD 4.0) project, funded with the contribution of the Italian Ministry of Economic Development (MISE), aiming to sustain the digitization process of the Italian Small and Medium Enterprises (SMEs). The DSS is part of an integrated framework, mainly including advanced services for blockchain traceability and agriculture planning, optimizing the cooperation among different actors, such as farmers, agronomists and fertilizer suppliers. The most relevant and challenging part of the platform consists of Machine Learning (ML) supervised and unsupervised algorithms with high performance, to optimize production and quality in viticulture. Specifically, the Probabilistic Neural Network (PNN) model provides the performance about time shortage prediction when compared with other ML algorithm performance. Finally, the clustering k-Means algorithm is applied to extract information about active substances, doses, time of shortage, adversities, and pathogen elements, useful to optimize a FER plan. All the analyzed algorithms are applied to an experimental dataset. The work starts with the design of the processes and of the information flow able to optimize grape supply chain and traceability, and then focuses on data analysis. The data analysis approach is suitable to formulate precision farming rules. 

Downloads

Download data is not yet available.

References

Abdullah M. N., & Sapuan, I. (2020). Stand-alone solar monitoring system using internet of things for fertirrigation system. Evolution in Electrical and Electronic Engineering, 1(1), 106-115, 2020.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and drainage paper. FAO ed. Rome, IT.

Aranganayagi S., & Thangavel, K. (2007, December 13-15). Clustering categorical data using Silhouette coefficient as a relocating measure. International Conference on Computational Intelligence and Multimedia Applications -ICCIMA- (pp.13-17). https://doi.org/10.1109/ICCIMA.2007.328

Baek, J. S., Kim S., & Harimoto, T. (2019). The effect of cultural differences on a distant collaboration for social innovation: a case study of designing for precision farming in Myanmar and South Korea. Design and Culture, 11(1), 37-58. https://doi.org/10.1080/17547075.2019.1565400

Bondre D. A., & Mahagaonkar, S. (2019). Prediction of crop yield and fertilizer recommendation using machine learning algorithms. International Journal of Engineering Applied Sciences and Technology, 4(5), 371-376. http://dx.doi.org/10.33564/IJEAST.2019.v04i05.055

Brandoli, B., Spadon, G., Esau, T., Hennessy, P., Carvalho, A. C., Amer-Yahia, S., & Rodrigues-Jr, J. F. (2021). DropLeaf: a precision farming smartphone tool for real-time quantification of pesticide application coverage. Computers and Electronics in Agriculture, 180(1). https://doi.org/10.1016/j.compag.2020.105906

Buonassisi, D., Colombo, M., Migliaro, D., Dolzani, C., Peressotti, E., Mizzotti, C., Velasco, R., Masiero, S., Perazzolli, M., & Vezzulli, S. (2017). Breeding for grapevine downy mildew resistance: a review of “omics” approaches. Euphytica, 213, 103. https://doi.org/10.1007/s10681-017-1882-8

Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Computers and Electronics in Agriculture, 151(1), 61-69. https://doi.org/10.1016/j.compag.2018.05.012

Choudhary, S., Gaurav, V., Singh, A., & Agarwal, S. (2019). Autonomous crop irrigation system using artificial intelligence. International Journal of Engineering and Advanced Technology, 8(5S), 46-51.

Chuan, I, He, P., & Zhao, T. (2016). Research advance on recommendation for crop fertilization methodology. Journal of Agricultural Science and Technology, 18(1), 95-102.

D’Accolti, A., Maggio, S., Massaro, A., Galiano, A.M., Birardi, V., & Pellicani, L. (2018). Assessment of data fusion oriented on data mining approaches to enhance precision agriculture practices aimed at increase of Durum Wheat (Triticum turgidum L. var. durum) yield. Journal of Food, Nutrition and Agriculture, 1(1), 47-54. https://doi.org/10.21839/jfna.2018.v1i1.229

Dong, Q., Sun, Q., Hu, Y., Xu, Y., & Qu, M. (2018). Data-driven horticultural crop model for optimal fertirrigation management: a methodology description. IFAC-PapersOnLine, 7(51), 472-476. https://doi.org/10.1016/j.ifacol.2018.08.167

Fawakherji, M., Potena, C., Pretto, A., Bloisi, D. D., & Nardi, D. (2021). Multi-spectral image synthesis for crop/weed segmentation in precision farming. Robotics and Autonomous Systems, 146(1). https://doi.org/10.1016/j.robot.2021.103861

Fischer, R. A. (1985). Number of kernels in wheat crops and the influence of solar radiation and temperature. The Journal of Agricultural Science, 105(2), 447-461. https://doi.org/10.1017/S0021859600056495

Fritschen, L. J. (1967). Net and solar radiation relations over irrigated field crops. Agricultural Meteorology, 4(1), 55-62. https://doi.org/10.1016/0002-1571(67)90042-8

Gaikwad, V., Mudholkar, P., & Khake, M. (2020). Smart Air Fertirrigation (SAF) without using fertilizers through air irrigation for sustainable agriculture. International Journal of Recent Technology and Engineering, 8(6), 4400-4404. http://dx.doi.org/10.35940/ijrte.F9702.038620

Incrocci, L., Massa, D., & Pardossi, A. (2017). New trends in the fertirrigation management of irrigated vegetable crops. Horticulturae, 3(2), 1-20. https://doi.org/10.3390/horticulturae3020037

Jacobs, A. J., Van Tol, J. J., & Du Preez, C. C. (2018). Farmers perceptions of precision agriculture and the role of agricultural extension: a case study of crop farming in the Schweizer-Reneke region, South Africa. South African Journal of Agricultural Extension, 46(2), 107-118. http://dx.doi.org/10.17159/2413-3221/2018/v46n2a484

Jiménez-Benítez, A., Ferrer, F. J., Greses, S., Ruiz-Martínez, A., Fatone, F., Eusebi, A. L., & Seco, A. (2020). AnMBR, reclaimed water and fertigation: two case studies in Italy and Spain to assess economic and technological feasibility and CO2 emissions within the EU innovation deal initiative. Journal of Cleaner Production, 270(1). https://doi.org/10.1016/j.jclepro.2020.122398

Kachor, A. Y., & Ghodinde, K. (2019, May 15-17). Design of microcontroller based agribot for fertirrigation and plantation. International Conference on Intelligent Computing and Control Systems -ICCS- (pp. 1215-1219). IEEE. https://doi.org/10.1109/ICCS45141.2019.9065768

Karunanithy, K, & Velusamy, B. (2020). Energy efficient cluster and travelling salesman problem based data collection using WSNs for Intelligent water irrigation and fertigation. Measurement, 161(1). https://doi.org/10.1016/j.measurement.2020.107835

Krupakar H., & Jayakumar, A. (2016). A review of intelligent practices for irrigation prediction. arXiv. https://arxiv.org/abs/1612.02893v1

Kumar, S., Karaliya, S. K., & Chaudhary, S. (2017). Precision farming technologies towards enhancing productivity and sustainability of rice-wheat cropping system. International Journal of Current Microbiology and Applied Sciences, 6(3), 142-151. https://doi.org/10.20546/ijcmas.2017.603.016

Lottes, P., Behley, J., Milioto, A., & Stachniss, C. (2018). Fully convolutional networks with sequential information for robust crop and weed detection in precision farming. IEEE Robotics and Automation Letters, 3(4), 2870-2877. https://doi.org/10.1109/LRA.2018.2846289

Maloku, D., Balogh, P., Bai, A., Gabnai, Z., & Lengyel, P. (2020). Trends in scientific research on precision farming in agriculture using science mapping method. International Review of Applied Sciences and Engineering, 11(3), 232-242, https://doi.org/10.1556/1848.2020.00086

Marucci, A., Colantoni, A., Zambon, I., & Egidi, G. (2017). Precision farming in hilly areas: the use of network RTK in GNSS technology. Agriculture, 7(7), 1-10. https://doi.org/10.3390/agriculture7070060

Massaro, A., Savino, N., & Galiano, A. (2020, July 19-23). Agri-photonics in precision agriculture. 22nd International Conference on Transparent Optical Networks -ICTON- (pp. 1-4). IEEE. https://doi.org/10.1109/ICTON51198.2020.9203077

Massaro, A., Meuli, G., Savino, N., & Galiano, A. (2018). A precision agriculture DSS based on sensor threshold management for irrigation field. Signal & Image Processing: An International Journal, 9(6), 39-58. https://doi.org/10.5121/SIPIJ.2018.9604

Massaro, A., Maritati, V., Savino, N., Galiano, A., & Picciotti, U. (2020). Blockchain and technologies matching with the case of study of vegetables production. Information Technology in Industry, 9(2), 1-8. https://it-in-industry.com/issue/archive/papers/106.html

Massaro, A., & Galiano, A. (2020). Re-engineering process in a food factory: an overview of technologies and approaches for the design of pasta production processes. Production & Manufacturing Research, 8(1), 80-100. https://doi.org/10.1080/21693277.2020.1749180

Massaro, A. (2021). Electronic in advanced research industry: from Industry 4.0 to Industry 5.0 advances. https://books.google.it/books?id=LP5FEAAAQBAJ

Massaro, A., Maritati, V., Galiano, A. Birardi, V., & Pellicani, L. (2018). ESB platform integrating KNIME data mining tool oriented on Industry 4.0 based on artificial neural network predictive maintenance. International Journal of Artificial Intelligence and Applications, 9(3), 1-17. https://doi.org/10.5121/IJAIA.2018.9301

Massaro, A., Maritati, V., Savino, N., Galiano, A., Convertini, D., De Fonte, E., & Di Muro, M. (2018). A study of a health resources management platform integrating neural networks and DSS telemedicine for homecare assistance. Information, 9(176), 1-20. https://doi.org/10.3390/info9070176

Moreno, R. H., & Garcia, O. (2018, November 1-3). Model of neural networks for fertilizer recommendation and amendments in pasture crops. ICAI Workshops -ICAIW- (pp. 1-5). IEEE https://doi.org/10.1109/ICAIW.2018.8555001

Nikoloski, S., Murphy, P., Kocev, D., Džeroski, S., & Wall, D. P. (2019). Using machine learning to estimate herbage production and nutrient uptake on Irish dairy farms. Journal of Dairy Science, 102(11), 10639-10656. https://doi.org/10.3168/jds.2019-16575

Njoroge, B. M., Fei, T. K., &Thir uchelvam, V. (2018). A research review of precision farming techniques and technology. Journal of Applied Technology and Innovation, 2(9), 22-30.

Olaniyi, O. M., Daniya, E., Kolo, J. G., Bala, J. A., & Olanrewaju, A. E. (2020). A computer vision-based weed control system for low-land rice precision farming. International Journal of Advances in Applied Sciences, 9(1), 51-61. http://doi.org/10.11591/ijaas.v9.i1.pp51-61

O'toole J. C., & Hatfield, J. L. (1983). Effect of wind on the crop water stress index derived by infrared thermometry. Agronomy Journal, 75(5), 811-817. https://doi.org/10.2134/agronj1983.00021962007500050019x

Paustian M., & Theuvsen, L. (2017). Adoption of precision agriculture technologies by German crop farmers. Precision Agriculture, 18, 701-716. https://doi.org/10.1007/s11119-016-9482-5

Pedersen, S., Medici, M., Anken, T., Tohidloo, G., Pedersen, M., Carli, G., Canavari, M., Tsiropoulos, Z., & Fountas, S. (2019). Financial and environmental performance of integrated precision farming systems. In Precision Agriculture ‘19, J. V. Stafford Ed.. https://doi.org/10.3920/978-90-8686-888-9_103

Pérez-Castro, A., Sánchez-Molina, J. A., Castilla, M., Sánchez-Moreno, J., Moreno-Úbeda, J. C., & Magán, J. J. (2017). cFertigUAL: a fertirrigation management app for greenhouse vegetable crops. Agricultural Water Management, 183(C), 186-193. http://dx.doi.org/10.1016%2Fj.agwat.2016.09.013

Pohl, J., Rautmann, D., Nordmeyer, H., & Von Hörsten, D. (2017). Site-specific application of plant protection products in precision farming by direct injection. Advances in Animal Biosciences, 8(2), 255-258. https://doi.org/10.1017/S2040470017000255

Power D., & Hadidi, R. (2019). Transforming agriculture: exploring precision farming research needs. Journal of the Midwest Association for Information Systems, 2(1), 1-6. https://doi.org/10.17705/3jmwa.000049

Pretto, A., Aravecchia, S., Burgard, W., Chebrolu, N., Dornhege, C., Falck, T., & Nieto, J. (2019). Building an aerial-ground robotics system for precision farming: an adaptable solution. IEEE Robotics & Automation Magazine, 28(3), 29-49. https://doi.org/10.1109/MRA.2020.3012492

Qin, Z., Myers, D. B., Ransom, C. J., Kitchen, N. R., Liang, S. Z., Camberato, J. J., & Shanahan, J. F. (2018). Application of machine learning methodologies for predicting corn economic optimal nitrogen rate. Agronomy Journal, 110(6), 2596-2607. https://doi.org/10.2134/agronj2018.03.0222

Rahman, M. K. I. A., Abidin, M. S. Z., Buyamin, S., & Mahmud, M. S. A. (2018). Enhanced fertirrigation control system towards higher water saving irrigation. Indonesian Journal of Electrical Engineering and Computer Science, 3(10), 859-866. http://doi.org/10.11591/ijeecs.v10.i3.pp859-866

Rahman, M. K. I. A., Buyamin, S., Abidin, M. S. Z., & Mokji, M. M. (2018). Development of automatic mixing process for fertirrigation system in rock melon cultivation. International Journal of Electrical and Computer Engineering, 8(3), 1913-1919. http://dx.doi.org/10.11591/ijece.v8i3.pp1913-1919

Razaak, M., Kerdegari, H., Davies, E., Abozariba, R., Broadbent, M., Mason, K., & Remagnino, P. (2019, 3-5 September). An integrated precision farming application based on 5G, UAV and deep learning technologies. International Conference on Computer Analysis of Images and Patterns (pp. 109-119). https://doi.org/10.1007/978-3-030-29930-9_11

Regar, K. L., & Singh, Y. V. (2014). Fertilizer recommendation based on soil testing for the targeted yield of rice in eastern plain zone of Utter Pradesh. The Bioscan, 9(2), 531-534.

Salvi, S., Jain, S. F., Sanjay, H. A., Harshita, T. K., Farhana, M., Jain N., & Suhas, M. V. (2017). Cloud based data analysis and monitoring of smart multi-level irrigation system using IoT. International Conference on IoT in Social, Mobile, Analytics and Cloud -I-SMAC- (pp. 752-757). IEEE. https://doi.org/10.1109/I-SMAC.2017.8058279

Sanghera, G. S., Kumar, A., & Bhatt, R. (2020). Prospects of precision farming in sugarcane agriculture to harness the potential benefits. Current Journal of Applied Science and Technology, 39(2), 112-125. https://doi.org/10.9734/cjast/2020/v39i230504

Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of Sciences, 106(37), 15594-15598. https://doi.org/10.1073/pnas.0906865106

Septar L., & Stoli, I. (2019). A review of the fertirrigation on the fruit trees. Current Trends in Natural Science, 8(16), 25-29.

Shamsuddin N. A. M., & Abdullah, M. N. (2020). Development of solar-powered automatic fertilizer system in chili fertirrigation technology. Evolution in Electrical and Electronic Engineering, 1(1), 35-45.

Shraddha, B. H., Shet, R. M., Nikita, P., & Iyer, N. C. (2018). Nutrient detection for maize plant using noninvasive technique. International Conference On Advances in Communication and Computing Technology -ICACCT- (pp. 504-509). IEEE. https://doi.org/10.1109/ICACCT.2018.8529659

Smith, M. (1992). CROPWAT: A computer program for irrigation planning and management. Food & Agriculture Organization of the United Nations. FAO ed. Rome, IT.

Subić, J., Jovanović, M. D., Despotović, Ž., & Jeločnik, M. (2016, June 30). Possibilities of applying robotic systems and smart sensor networks in integrated agricultural apple production. International Conference on Robotics in Alpe-Adria Danube Region (pp. 269-281). https://doi.org/10.1007/978-3-319-49058-8_30

Sureshkumar, P., Geetha, P., Kutty, M. N., Kutty, C. N., & Pradeepkumar, T. (2017). Fertigation-the key component of precision farming. Journal of Tropical Agriculture, 54(2), 103-114, 2017.

Visconti, P., Giannoccaro, N. I., De Fazio, R., Strazzella S., & Cafagna, D. (2020). IoT-oriented software platform applied to sensor-based farming facility with smartphone farmer app. Bulletin of Electrical Engineering and Informatics, 9(3), 1095-1105. https://doi.org/10.11591/eei.v9i3.2177

Zamora-Izquierdo, M. A., Santa, J., Martínez, J. A., Martínez, V., & Skarmeta, A. F. (2019). Smart farming IoT platform based on edge and cloud computing. Biosystems Engineering, 177(1), 4-17. https://doi.org/10.1016/j.biosystemseng.2018.10.014

Wu, I. P. (1992). Energy gradient line approach for direct hydraulic calculation in drip irrigation design. Irrigation Science, 1(13), 21-29, 1992. https://doi.org/10.1007/BF00190241

Xu, X., He, P., Yang, F., Ma, J., Pampolino, M. F., Johnston, A. M., & Zhou, W. (2017). Methodology of fertilizer recommendation based on yield response and agronomic efficiency for rice in China. Field Crops Research, 206(1), 33-42. https://doi.org/10.1016/j.fcr.2017.02.011

Published

16-06-2022

Issue

Section

Articles