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INTRODUCTION

Fertirrigation (FER) is a growing field that is based on 
the mix of agricultural and technological knowledge and 
practice (Maloku et al., 2020). The technological domain of 
the FER is based on the following elements: wireless sensors, 
soft computing and Internet of Things (IoT) (Njoroge et al., 
2018), analytics, Decision Support Systems (DSSs), cloud 
storage data (Power et al., 2019), geographic information 
system-GIS, precision planting (Kumar et al., 2017), global 
navigation satellite system (Marucci et al., 2017). FER systems 
can be integrated with 5G technology (Razaak et al., 2019). 
FER reduces the waste of resources (Sanghera et al., 2020; 
Sureshkumar et al., 2017). FER systems remove the presence 
of weeds from the soil (Lottes et al., 2018; Olaniyi et al., 2020). 
Robotization can boost the application of FER (Pretto et al., 
2019; Fawakherji et al., 2021). FER improves the managerial 
efficiency of agricultural firms (Paustian et al., 2017) increasing 
the productivity of the soil (Baek et al., 2019). The usage of FER 
systems has a positive effect on promoting the efficiency of the 
nutrition method and the reduction of pollution (Septar et al., 
2019). The implementation of photovoltaic systems can also 
improve the efficiency of a FER system (Shamsuddin et al., 
2020; Abdullah et al., 2020). The efficiency of FER systems can 
also be improved with the usage of IoT (Visconti et al., 2020) 
and data management (Subić et al., 2016). The application 

of information technology can have a positive impact on 
FER (Incrocci et al., 2017) also in developing countries 
(Shraddha et al., 2018; Jacobs et al., 2018). Applications can 
also have a role FER management (Pérez-Castro et al., 2017). 
The application of FER systems, based on robotization, data 
management and IoT (Zamora-Izquierdo et al., 2019) has a 
positive role in reducing water scarcity (Rahman & Abidin 
et al., 2018; Jiménez-Benítez et al., 2020; Kachor et al., 2019; 
Gaikwad et al., 2020), diminution of water waste (Rahman & 
Buyamin et al., 2018; Salvi et al., 2017) and optimization of 
nutrients (Dong et al., 2018; Karunanithy et al., 2020). The 
application of FER techniques also has a positive impact on 
the ability to calculate the appropriate metrics for planning 
irrigation (Smith, 1992; Wu, 1992) and evapotranspiration 
(Allen et al., 1998). The application of methods of estimation 
and prediction, can be optimized through the usage of 
statistical and computational methods based on Machine 
Learning (ML) (Choudhary et al., 2019; Krupakar et al., 
2016). The application of fertilization plans is based on the 
estimation of quantities of fertilizers and nutrients present in 
the soil (Regar & Singh, 2014; Chuan & Zhao, 2016; Xu et al., 
2017; Brandoli et al., 2021). The quantitative estimation of the 
mixture of fertilizers, water and nutrients is mainly based on 
statistical and computational methods i.e., ML (Chlingaryan 
et al., 2018; Qin et al., 2018; Nikoloski et al., 2019; Pedersen 
et al., 2019; Pohl et al., 2017). To optimize the FER plan it is 
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also important to collect information about other variables 
such as: precipitation, temperature, humidity, pressure, dew 
point, wind speed, and intensity of solar radiation (Schlenker 
& Roberts, 2009; O’toole & Hatfield, 1983; Fritschen, 1967; 
Fischer, 1985). To perform an improved FER activity, it is 
necessary to gain the knowledge about the nutrients of the 
soil (Moreno & Garcia, 2018; Bondre & Mahagaonkar, 2019). 
Concerning irrigation and FER advances, specific methods 
can be adopted using DSS models based on data field detection 
(Massaro & Savino et al., 2020; Massaro & Meuli et al., 2018) 
and data fusion approaches (D’Accolti et al., 2018). Another 
technology useful for the traceability of field production 
processes is the blockchain (Massaro & Maritati et al., 
2020). The described state of the art, highlights that the FER 
technologies and approaches can be different. For each crop 
can be developed specific approaches and technologies: the 
complexity is mainly to find the technology matching with the 
specific pilot case study, starting to the process optimizing. In 
this direction, a first step is to implement a software platform 
able to collect field data and actor’s information. The basic 
principle to construct a FER DSS is to design and implement 
an information system platform, allowing the communication 
between different system actors such as agronomists, farmers, 
fertilizer suppliers, and analyzing collected data by means of 
specific methods and ML algorithms. Specifically, the study 
proposed in this paper is part of the Smart District 4.0 (SD 
4.0) project, supported by the Italian Ministry of Economic 
Development (MISE), with the aim of stimulating the 
widespread digitization processes of SMEs in some typical 
sectors. In particular, as regards the Agro-Industrial sector, 
SD 4.0 has undertaken an experimental test case aimed 
at enhancing a solution for precision farming developed 
by Asepa Energy srl, a small company with high expertise 
and skill in industrial automation. Thanks to the proposed 
platform, it is possible to automate remotely combined cycles 
of irrigation and fertilization. The goals of the pilot case study 
of the project is to:

•	 Provide	a	single	method	of	access	to	the	various	users	of	
the system platform: farmers, agronomists, suppliers and 
possibly actors in the distribution chain, such as buyers, 
logisticians and consumers.

•	 Guarantee	the	certified	traceability	of	field	operations	via	
blockchain;

•	 Guarantee	 the	management	of	 stocks	 in	 the	warehouse,	
with the automatic supply of fertilizers;

•	 Allow	the	agronomist	to	be	able	to	set	the	FER	plan	also	
in terms of proposals automatically generated and based 
on the updated status of the production site (sensors, 
weather, etc.) using automatic learning logics;

•	 Provide	graphical	dashboards	useful	for	precision	farming	
in the viticulture field.

Following the main goals of the project, the results of the 
proposed work are discussed in the following steps:
•	 Design	of	the	information	system	of	the	pilot	case	study	

describing in details dataflow architectures;

•	 Production	 process	 design	 by	 means	 of	 the	 Business	
Process Modeling Notation (BPMN) approach;

•	 The	description	of	blockchain	and	platform	FER	planning	
dashboards;

•	 Comparison	 of	 different	 ML	 algorithm	 performances	
suitable for the prediction of the important variable of the 
time of shortage indicating company productivity;

•	 The	adoption	of	the	clustering	k-Means	model	to	provide	
graphical dashboards indicating the effectiveness of 
fertilizers.

METHODS

Architecture design

Figure 1 is illustrated the architecture of the FER system 
related to the case of study: the architecture indicates the data 
flow between the whole SD 4.0 platform involving field data 
of a central unit located in a field, and other data available in 
the cloud.

The DSS is integrated into the platform and processes 
different data such as weather data and predicted ones, 
products used for pathogens and adversities, product doses and 
times of shortage. As shown in the architecture of Figure 2, the 
field data transmission is enabled by MQ Telemetry Transport 
or Message Queue Telemetry Transport (MQTT) messages. 
Input sensor data and field information are processed by ML 
algorithms (core of the DSS system), providing fertilizer and 
irrigation recommendations and predictions.

Figure 1: Architecture of the SD 4.0 fertirrigation system.

Figure 2: Example of a ML DSS Model indicating a FER data 
processing approach.
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BPMN processes

From the analysis of the AS-IS processes, substantially 
manual procedures are revealed which allow to trace field 
operations in a paper book. All the operating processes are 
not automatized, and the agronomist used a paper scheduling 
the FER procedures to perform. The actors involved in the 
optimized TO-BE processes are therefore substantially the 
same as those considered in the AS-IS processes, by adding 
the FER manager reading the DSS ML outputs. Furthermore, 
the new process has added to the registration (notarization) of 
information via blockchain.

All the actors involved in the new processes are therefore 
the FER manager, the agronomist, the farmer and the fertilizer 
manufacturing company providing commercial field treat-
ment. In Figure 3 is illustrated the BPMN diagram of the first 
TO-BE use case, involving the various actors of the system. 
This diagram is based on the concept that, concerning the 
FER phases, there are three different methods:
•	 Manual	fertigation:	in	this	case	the	farmer	can	fertirrigate	

the field by activating the SD 4.0 system remotely using 
a mobile phone, sending the commands about the 
irrigation, the type of fertilizer and the doses to be used;

•	 Scheduled	 fertigation:	 the	 farmer	 can	 set	 up	 a	 calendar	
containing a FER plan by specifying information such 
as date, start time, end time, amount of water, type and 
amount of fertilizer to adopt;

•	 Automatic	 fertigation:	 in	 this	 case	 the	 SD	 4.0	 system	
proceeds with the automatic FER of the field, detecting 

data from the field sensors and applying the FER 
model  set.

The manual and the scheduled procedures are optimized 
by setting some threshold values able to control the FER 
process. The farmer and the agronomist pools complete the 
first case study: the farmer set doses, data, operating hour, and 
could enable the automatic FER plan, while, the agronomist 
creates and updates the FER model by suggesting to the farmer 
the actions to perform according to the results provided by 
the  DSS.

The BPMN diagram of Figure 4 indicates the second 
use case describing the SD 4.0 platform’s main functions 
of traceability of treatments via blockchain and inventory 
management. The use case is able to trace the life cycle of the 
product transcribing the related information useful also for 
agro-industrial companies which could manage and monitor 
the entire production chain, learn about the trend of crops 
and the cultivation techniques adopted by suppliers. In this 
use case, a notarization procedure is proposed by the farmer 
relating to any information on the products used (fertilizers) 
and any activity performed in the field (sowing date, seed 
type, position of the field, associated area, treatment date, 
etc.). Information notarization via blockchain, offers in the 
first instance the possibility to the final customer or supply 
chain operators, to retrieve all the information on a specific 
product by simply reading the QR code as packaging label of 
the purchased product. In the same formal model, the process 
of replenishing the fertilizer stocks is also managed based 

Figure 3: First use case: BPMN “TO BE” process involving different actors of the FER system.
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on the trend in consumption related to their use during the 
season. The SD 4.0 platform receives the message, acquires 
all the information associated with the particular event ID 
from the DB, and notarizes them through blockchain. Then 
the platform updates the stocks and verifies the availability 
for other programmed FER plans. In the case of product 
unavailability, the platform automatically sends a notification 
to the fertilizer producer enabling the purchase process.

In Figure 5 is illustrated the third use case involving the 
“core” actor of the agronomist, enabling processes of creating 
and updating the FER plan. The goal of this use case is to 
create an intelligent and automatic FER system through 
the use of ML techniques, maximizing crop yields. The 
factors contributing to the crop yield are the environmental 
factors such as meteorological factors (rainfall, temperature, 
humidity, air pressure, dew point, wind speed, intensity of 
solar radiation), culture factors (type of crop, morphological 
composition of the soil, evapotranspiration conditions), and 
agronomic factors (quantity of fertilizer or water used in the 
last irrigation, estimated shortage time). The FER model is set 
using a calendar, where for each FER event the agronomist 
will have to specify the related information.

PLATFORM FRAMEWORK

The Unified Modeling Language (UML) scheme of Figure 6 
indicates the Use Case Diagram (UCD), including all system 
functions and actors, and shows SD 4.0 platform data flow. 
In the diagram is distinguished the data warehouse system 
(Google Cloud BigQuery), and the relationships between all 
actors. As main DSS outputs are indicated in the figure the 
stock management indicators, the intelligent FER plan, the 
weather forecasting and data clustering dashboards. Figure 6 is 
representative of the BPMN “TO BE” process in Figure 5. The 
DSS “core” is constituted by the Konstanz Information Miner 
(KNIME) artificial intelligence algorithms. The adopted 

KNIME workflows are objects oriented Graphical User 
Interfaces (GUIs) suitable for industrial applications (Massaro 
& Galiano, 2020; Massaro, 2021; Massaro et al., 2018). More 
details will be provided in the Results section.

RESULTS

SD 4.0 frontend implemented interfaces

The SD 4.0 platform is developed by using different 
technologies embedded into a unique framework. In 
particular, the Ethereum technology is adopted to include 
notarized information into blockchain blocks and to trace 
product transactions. In Figure 7 is illustrated a screenshot of 
the frontend interface controlling blockchain data.

The frontend interface related to SD 4.0 initial FER plan 
creation is shown in the Figure 8.

When a FER plan is created a unique Identification 
number (ID) is associated with each FER event. In Figure 9 is 
illustrated the Graphical User Interface (GUI), composed of 
the different fields structuring a FER plan.

The output of the created event is summarized by the layout 
interface of Figure 10.

DSS data processing of the experimental dataset

Some functions of the DSS are forecasting and the data 
clustering supporting agronomists to define FER plans. The 
experimental dataset concerns two years of FER process, 
related to three fields used for three grape typologies (Red 
Globe, Italia, Selvatico), and contains the following attributes 
for a total number of 94 records:
•	 Time:	sampling	time	of	the	experimental	dataset;
•	 Time	of	Shortage	(key	parameter	expressing	field	activity	

and consecutively productivity): waiting time for further 
field operations;

Figure 4: Second use case: BPMN “TO BE” of the SD 4.0 platform.

Figure 5: Third use case: BPMN “TO BE” process associated to the agronomist.
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•	 Pesticide	Doses:	quantity	of	pesticide	doses	expresses	in	g/L;
•	 Pathogen/adversity	element:	Red	Spider	(Ragnetto	Rosso),	

Downy Mildew (Peronospora), Moth (Tignoletta), 
Frankinella Occidentalis, Powdery Mildew (Oidio), Gray 
Mold (Muffa Grigia), Catch Moth (Cattura Tignola), 
Leafhoppers (Cicalina);

•	 Commercial	 fertilizer	 typology	 (Sercadis,	 DUORO	
100 EC, Fluxapyroxad, Forum 50 Wp, Quantum, 
Tiovit jet, CAL-EX 1,9 EW, Penconanzolo, Topas 10 
EC, Abamectina, Cimoxanil, Folpet, Geoxe, Karathane 

star, Mevaxil M, Microthiol disperss, Mildicut, Rame, 
Reindan 22, Rufast e Flo, Trap test, Affirm, Belpromec, 
Brodoflow new, Cerexil M Dg, Cloripirifos-metile, 
Corner MZ, Cyazofarmin Fosfonato di Disodio. Dicarzol 
50 SP, Dimetomorf, Fludioxonil, Laotta, Metalaxyl M 
Mancozeb, Meptyldinocap, Moxyl 45 WG, Optix 80 
disperss, Poltiglia disperss, R6 Albis, Ridomil Gold MZ 
Pepite, Sacron 45 WG, Sundek, Support 10 EC, Vite for 
WG 80, Tiogel WG, Vertimec EC, Vite for WG 80, Vitene 
Ultra SC, Zolfo Bagnabile).

Figure 6: UML UCD diagram of the whole DSS of the FER system.

Figure 7: Ethereum blockchain GUI indicating node transaction list.
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•	 Active	 substance	 of	 the	 fertilizer	 (Clorpirifos	 Metile,	
Penconazolo [Penconazole], Topas 10 EC [Penconazole 
based], Abamectina [Abamectin], Dimetomorfo 
[Dimetomorph], Nordox Energy [Copper based], Cobre 
Nordox [Cu2O based], Sundex, Rame [Copper], Geoxe 
[fludioxonil based], Emamectina Benzoato [Emamectin 
Benzoate], Zolfo Bagnabile [Wettable Sulfur], Fludioxonil, 

Tiovit Jet [formulated based on technologically 
advanced sulfur], Abamectina [Abamectin], Acrinatrina 
[Acrinatrin], Cimoxanil, Fosetil-Al [Aluminum 
ethylphosphite based], Fluopicolide+Fosetil-Al, 
Mancozeb Metalaxyl-m, Tartrate-resistant acid 
phosphatase [Trap] test, Formentate, Fluxapyroxad, 
Sercadis [Fluxapyroxad based], Folpet, Folpan 80 
WG [Folpet based], Meptyldinocap, Karathane Star 
[Meptyldinocap based], Vitene Ultra SC, CAL-EX 1,9 
EW [Abamectin based], Mildicut [Cyazofamid and 
Disodium Phosphonate based], Cyazofamid Fosfonato 
di Disodio [Cyazofamid Disodium Phosphonate], Sacron 
45 WG [CIMOXANIL based], Carexil M DG [Metalaxyl 
and Mancozeb based], Penconazole, DUORO 100 EC 
[Penconazole based], Forum 50 Wp [DIMETOMORF 
based]);

Where some commercial fertilizers have the same name 
as the active substances. The dataset is sorted by date. A first 
approach to analyze experimental data, is to find the best 
supervised algorithm for forecasting. In Table 1 are listed the 
performance indicators of Artificial Neural Network (ANN)-
Multilayer Perceptron (MLP), Fuzzy Rule, Probabilistic Neural 
Network (PNN), Simple Regression Tree, Gradient Boosted 

Figure 8: SD 4.0 platform: initial graphical user interface of the FER plan creation.

Figure 10: Output of the FER plan.

Figure 9: SD 4.0 platform: GUI of the construction of the FER plan.
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Trees, and Linear Regression algorithms. The performance is 
estimated by adopting Konstanz Information Miner (KNIME) 
workflow [59] using the standard hyperparameters indicated 
in Table 2 (parameters provided by the KNIME tool as default 
parameters).

In order to optimize the metric for the best performance 
estimation, it is defined the BestAlgorithm of Eq. (1), defins 
the final algorithm ranking. By observing the results of 
Table 3, the PNN algorithm represents the best algorithm for 
the fixed hyperparameters. Different results can be achieved 
by changing hyperparameters by adopting an approach 
based on error minimization (Massaro et al., 2018), but the 
proposed method is useful to find a primary an algorithm 

suitable for the experimental dataset, by considering also 
the BestAlgorithm indicator able to address the choice by 
estimating the sum of the Mean Absolute Error (MAE), 
Means Squared Error (MSE), and Root Mean Squared Error 
(RMSE).

 (1)

In Figure 11 is illustrated the KNIME workflow 
implementing PNN algorithm composed by the following 
blocks (workflow objects):

•	 Excel	Reader:	reader	of	dataset	exported	from	BigQuery	
datawarehouse in the local repository;

•	 Table	Manipulator:	 block	used	 for	 the	data	 type	 setting	
(attributes as string, double, etc.);

•	 Column	Filter:	 block	 selecting	 the	 attributes	 to	 analyze	
(for the specific case of the algorithm comparison are 
considered the key attributes of Time of Shortage and 
Pesticide Doses);

•	 Normalizer:	block	able	to	normalize	the	attribute	values	
to average strong data oscillations and, consecutively, 
reducing error during the calculus;

•	 Partitioning:	 block	 splitting	 the	 experimental	 dataset	
into training and testing dataset (for the comparison is 
adopted 70 % of the dataset for the training, and 30 % of 
the dataset for the testing);

•	 PNN	Learner:	algorithm	training	block;
•	 PNN	Predictor:	algorithms	testing	block;
•	 Numerical	 Scorer:	 block	 providing	 error	 indicators	 of	

Table 1.
The forecasting is performed by considering the key 

attributes of pesticide dose, and time of shortage. For example 
Figure 12 is illustrated the trend of the Pesticide dose during 
two operation years, where more records can coincide with 
the same data explaining why the second season appears to 
be longer.

The Time Shortage trends related to the two analyzed 
seasons, and to the prediction of the third year, are plotted in 
Figure 13: the days are limited to a period range between 10 
and 35 days with some peaks observed in the first year and 
in the predicted one. The result of Figure 13 proves that for 
the three analyzed grape fields the human work is and will be 
controlled (correct execution of the FER plan).

The second approach adopted for data analysis is to find 
data clusters supporting dataset reading, and providing 
information about precision farming for the specific case study. 

Table 1: Standard hyperparameters adopted for the comparison

Table 2: Standard hyperparameters adopted for the comparison 
of different ML algorithms

Algorithm Hyperparameters
Algorithm Hyperparameters
PNN Missing values Best Guess

ShrinK after commit Yes
Use class with max coverage No
Maximum number of Epochs 42

ANN-MLP Maximum number of iterations 100
Number of Hidden Layers 1
Number of Hidden Neurons per Layer 10
Ignore Missing Values No
Use seed for random initialization No

Fuzzy Rule Missing values Best Guess
ShrinK after commit Yes
Use class with max coverage Yes
Maximum no. Epochs 42

Simple 
Regression 
Tree

Enable Highlighting 2.000
Missing value handling XGBoost
Limit number of levels (tree depth) 10
Minimum split node size 1
Minimum node size 5

Gradient 
Boosted 
Trees 

Limit number of levels (tree depth) 4
Number of models 100
Learning rate 0,1

Linear 
Regression

Predefined Offset Value 0
Missing Values in Input Data Fail on 

observing 
missing values

Scatter Plot View-First Row 1
Scatter Plot View-Row Count 20.000
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Table 3: Ranking related to the tested algorithms using the BestAlgorithm indicator

Figure 11: KNIME workflow applied to the experimental dataset, implementing PNN algorithm.

Figure 13: Time of Shortage (labelled class) trend related the period from May to August (2019-2020).

Figure 12: Dose data trend collected into two operation years (2019-2020). The dose refers to a specific active substance.
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Figure 14: KNIME workflow implementing k-Means algorithm.

Table 4: Silhouette coefficients estimated for k = 5, k = 6, and 
k = 7

Silhouette Coefficient (SC)
Cluster SC for k=5

(5 cluster)
SC for k=6
(6 cluster)

SC for k=7
(7 cluster)

0 0,414 0,414 0,392
1 0,073 0,580 0,580
2 0,981 0,981 0
3 0,365 1 1
4 0,901 0,364 0,364
5 // 0,901 1
6 // // 0,979
overall 0,403 0,506 0,495

In order to obtain DSS graphical dashboards, the KNIME 
workflow of Figure 14 is adopted implementing the k-Means 
algorithm. The choice of the cluster number k is defined by 
estimating the Silhouette Coefficient (SC) (Aranganayagi 
et al., 2007). The estimated SCs are listed in Table 4: a good 
approach is to select the k number providing the best overall 
SC number for the case of k =6.

DISCUSSION

By fixing k = 6 are estimated the clustering dashboards 
plot two variables for each graph. Reading the dashboards of 
Figures 15-19, the information resumed in Table 5 has been 
achieved, useful to optimize a FER plan.

Figure 15: Clusters defined by Pathogen/Adversity versus Pesticide Dose (k=6).
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Figure 16: Clusters defined by Pathogen/Adversity versus Time of Shortage (k=6).

Figure 17: Clusters defined by active substance versus Pathogen/Adversity (k=6).
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Figure 18: Clusters defined by active substance versus time of shortage (k=6).

Figure 19: Clusters defined by active substance versus Pesticide Dose (k=6).
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CONCLUSIONS

The proposed work discusses the results of a project based on 
the technological improvement of a company working in FER. By 
Adopting a software platform, new processes are implemented 
to formulate FER plans according to data analysis criteria. In 
this direction, DSS dashboards of supervised and unsupervised 
algorithms provide a further tool supporting agronomist 
decisions focused on the analysis of key parameters such as 
adopted active substances and related doses, time of shortage 
and adversity or pathogen elements. The paper is oriented to 
describe the data flow of the pilot case study showing methods 
and approaches useful for data processing and data analysis. 
The proposed methods can be extended to other typologies of 
cultures requiring precision farming, and to Industry 4.0 systems.
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