Response of tomato fruit to consecutive impact loading

Authors

  • Hossein Ghaffari-Setoubadi Department of Bio systems Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
  • Hamid-Reza Ghassemzadeh Department of Bio systems Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
  • Khosro Mohammadi-Ghermezgoli Department of Bio systems Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
  • Seyed Abbas Rafat Department of Animal science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
  • Omid Halimi-Milani Amirkabir University of Technology-AUT, Tehran, Iran

DOI:

https://doi.org/10.25081/jaa.2024.v10.8944

Keywords:

Bruise probability, Impact damage, Statistical models, Successive loading

Abstract

Tomato fruits receive successive impacts during harvest and postharvest operations. This paper is a study of the response of tomato fruit to mono and multiple dynamic loadings and the ability to withstand consecutive impacts, which play the most critical role in downgrading and postharvest loss of fresh tomato fruits and designing harvest, and postharvest handling and processing equipment. The fruits were subjected to consecutive impacts by an instrumented pendulum one to three times successive impacts at the same location with the three different impact energy levels: 125, 250, and 500 mJ to establish a comprehensive model and refining by adding various groups of contributing factors to understand better and find out which parameters are more likely to cause and contribute in tomato mechanical damage. Twenty sub-models were evaluated using AIC and R2 values. The parameters of the preferred logistic model consist of response variables (peak contact force, contact time, and Elast), loading conditions (one, two, and three-times impact at the same location), and fruit quality parameter (total soluble solids). Also, another model was suggested for rapid assessment of bruise development.

Downloads

Download data is not yet available.

References

Adedeji, O., Taiwo, K. A., Akanbi, C. T., & Ajani, R. (2006). Physicochemical properties of four tomato cultivars grown in Nigeria. Journal of Food Processing and Preservation, 30, 79-86. https://doi.org/10.1111/j.1745-4549.2005.00049.x

Afsharnia, F., Mehdizadeh, S. A., Ghaseminejad, M., & Heidari, M. (2017). The effect of dynamic loading on abrasion of mulberry fruit using digital image analysis. Information Processing in Agriculture, 4(4), 291-299. https://doi.org/10.1016/j.inpa.2017.07.003

Agresti, A. (2018). An Introduction to Categorical Data Analysis. (3rd ed.). New Jersey, US: Wiley.

Ahmadi, E. (2012). Bruise susceptibilities of kiwifruit as affected by impact and fruit properties. Research in Agricultural Engineering, 58(3), 107-113. https://doi.org/10.17221/57/2011-RAE

Ahmadi, E., Barikloo, H., & Soliemani, B. (2014). The effect of fruit properties on the apricot bruises susceptibility. Journal of Food Measurement and Characterization, 8, 46-53. https://doi.org/10.1007/s11694-013-9164-1

Ahmadi, E., Ghassemzadeh, H. R., Sadeghi, M., Moghaddam, M., & Neshat, S. Z. (2010). The effect of impact and fruit properties on the bruising of peach. Journal of Food Engineering, 97(1), 110-117. https://doi.org/10.1016/j.jfoodeng.2009.09.024

Akanbi, C. T., & Oludemi, F. O. (2004). Effect of processing and packaging on the lycopene content of tomato products. International Journal of Food Properties, 7(1), 139-152. https://doi.org/10.1081/JFP-120024173

Allende, A., Desmet, M., Vanstreels, E., Verlinden, B. E., & Nicolaı̈, B. M. (2004). Micromechanical and geometrical properties of tomato skin related to differences in puncture injury susceptibility. Postharvest Biology and Technology, 34(2), 131-141. https://doi.org/10.1016/j.postharvbio.2004.05.007

Atherton, J. G., & Rudich, J. (1986). The Tomato Crop. (1st ed.). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-009-3137-4

Aydın, C., & Özcan, M. (2002). Some physico-mechanic properties of terebinth (Pistacia terebinthus L.) fruits. Journal of Food Engineering, 53(1), 97-101. https://doi.org/10.1016/S0260-8774(01)00145-5

Beaudry, R. M., Severson, R. F., Black, C. C., & Kays, S. J. (1989) Banana ripening: implications of changes in glycolytic intermediate concentrations, glycolytic and gluconeogenic carbon flux, and fructose 2, 6-bisphosphate concentration. Plant Physiology, 91(4), 1436-1444. https://doi.org/10.1104/pp.91.4.1436

Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63(1), 129-140. https://doi.org/10.1016/j.postharvbio.2011.05.016

Ben, J., & Gaweda, M. (1985). Changes of pectic compounds in Jonathan apples under various storage conditions. Acta Physiologiae Plantarum, 7(2), 45-54.

Bielza, C., Barreiro, P., Rodrı́guez-Galiano, M. I., & Martı́n, J. (2003). Logistic regression for simulating damage occurrence on a fruit grading line. Computers and Electronics in Agriculture, 39(2), 95-113. https://doi.org/10.1016/S0168-1699(03)00021-8

Blahovec, J., & Paprštein, F. (2005). Susceptibility of pear varieties to bruising. Postharvest Biology and Technology, 38(3), 231-238. https://doi.org/10.1016/j.postharvbio.2005.07.005

Brusewitz, G. H., & Bartsch, J. A. (1989). Impact parameters related to post harvest bruising of apples. Transactions of the ASAE, 32(3), 953-957. https://doi.org/10.13031/2013.31097

Cañete, M. L., Hueso, J. J., Pinillos, V., & Cuevas, J. (2015). Ripening degree at harvest affects bruising susceptibility and fruit sensorial traits of loquat (Eriobotrya japonica Lindl.). Scientia Horticulturae, 187, 102-107. https://doi.org/10.1016/j.scienta.2015.03.008

Chen, H., & De Baerdemaeker, J. (1995). Optimization of Impact Parameters for Reliable Excitation of Apples During Firmness Monitoring. Journal of Agricultural Engineering Research, 61(4), 275-282. https://doi.org/10.1006/jaer.1995.1055

Crouch, I. (2001). 1-Methylcyclopropene (Smartfresh TM) as an alternative to modified atmosphere and controlled atmosphere storage of apples and pears. Acta Horticulturae, 600, 433-436. https://doi.org/10.17660/ActaHortic.2003.600.64

Desmet, M., Lammertyn, J., Scheerlinck, N., Verlinden, B. E., & Nicolaı̈, B. M. (2003). Determination of puncture injury susceptibility of tomatoes. Postharvest Biology and Technology, 27(3), 293-303. https://doi.org/10.1016/S0925-5214(02)00115-1

Desmet, M., Lammertyn, J., Var linden, V., Verlinden, B. E., Darius, P., & Nicolaı̈, B. M. (2004b). The relative influence of stem and fruit properties on stem puncture injury in tomatoes. Postharvest Biology and Technology, 33(2), 101-109. https://doi.org/10.1016/j.postharvbio.2004.02.001

Desmet, M., Lammertyn, J., Verlinden, B. E., & Nicolaï, B. M. (2002). Mechanical properties of tomatoes as related to puncture injury susceptibility. Journal of Texture Studies, 33(5), 415-429. https://doi.org/10.1111/j.1745-4603.2002.tb01357.x

Desmet, M., Van linden, V., Hertog, M. L. A. T. M., Verlinden, B. E., De Baerdemaeker, J., & Nicolaı̈, B. M. (2004a). Instrumented sphere prediction of tomato stem-puncture injury. Postharvest Biology and Technology, 34(1), 81-92. https://doi.org/10.1016/j.postharvbio.2004.04.006

Diener, R. G., Elliott, K. C., Nesselroad, P. E., Ingle, M., Adams, R. E., & Blizzard, S. H. (1979). Bruise energy of peaches and apples. Transactions of the ASAE, 22(2), 287-290. https://doi.org/10.13031/2013.35007

Fu, H., Liu, G., Yang, J., Du, W., Wang, W., & Yang, Z. (2023). Bruising damage in apple-to-apple collision via a sliding method. Biosystems Engineering, 235, 150-165. https://doi.org/10.1016/j.biosystemseng.2023.09.017

Gao, Y., & Rao, X. (2019). Blackspot bruise in potatoes: susceptibility and biospeckle activity response analysis. Journal of Food Measurement and Characterization, 13, 444-453. https://doi.org/10.1007/s11694-018-9958-2

Ghaffari, H., RezaGhassemzadeh, H., Sadeghi, M., & Alijani, S. (2015). Some physical, mechanical and chemical properties of tomato fruit related to mechanical damage and bruising models. Biological Forum, 14.

Holt, J. E., & Schoorl, D. (1984). Mechanical properties and texture of stored apples. Journal of Texture Studies, 15(4), 377-394. https://doi.org/10.1111/j.1745-4603.1984.tb00393.x

Hou, J., Park, B., Li, C., & Wang, X. (2024). A multiscale computation study on bruise susceptibility of blueberries from mechanical impact. Postharvest Biology and Technology, 208, 112660. https://doi.org/10.1016/j.postharvbio.2023.112660

Hung, Y., & Prussia, S. (1988). Determining bruise susceptibility of peaches. ASAE paper 88-6026, St Joseph, MI, USA: ASAE.

Hussein, Z., Fawole, O. A., & Opara, U. L. (2018). Preharvest factors influencing bruise damage of fresh fruits – a review. Scientia Horticulturae, 229, 45-58. https://doi.org/10.1016/j.scienta.2017.10.028

Hussein, Z., Fawole, O. A., & Opara, U. L. (2019a). Bruise damage susceptibility of pomegranates (Punica granatum, L.) and impact on fruit physiological response during short term storage. Scientia Horticulturae, 246, 664-674. https://doi.org/10.1016/j.scienta.2018.11.026

Hussein, Z., Fawole, O. A., & Opara, U. L. (2019b). Determination of physical, biochemical and microstructural changes in impact-bruise damaged pomegranate fruit. Journal of Food Measurement and Characterization, 13, 2177-2189. https://doi.org/10.1007/s11694-019-00138-z

Hussein, Z., Fawole, O. A., & Opara, U. L. (2020). Harvest and Postharvest Factors Affecting Bruise Damage of Fresh Fruits. Horticultural Plant Journal, 6(1), 1-13. https://doi.org/10.1016/j.hpj.2019.07.006

Javadi, A., Ahmadi, E., Abbaspour-Fard, M. H., Sadeghi, M., Ghassemzadeh, H. R., Zarifneshat, S. & Shervani-Tabar, M. T. (2010). Effect of impact level and fruit properties on golden delicious apple bruising. American Journal of Agricultural and Biological Science, 5(2), 114-121. https://doi.org/10.3844/ajabssp.2010.114.121

Khan, M. A., Butt, S. J., Khan, K. A., Nadeem, F., Yousaf, B., & Javed, H. U. (2017). Morphological and physico-biochemical characterization of various tomato cultivars in a simplified soilless media. Annals of Agricultural Sciences, 62(2), 139-143. https://doi.org/10.1016/j.aoas.2017.10.001

Kilcast, D. (2004). Texture in Food: Solid Foods. Sawston, UK: Woodhead Publishing Limited.

Lana, M. M., Tijskens, L. M. M., & van Kooten, O. (2006). Modelling RGB colour aspects and translucency of fresh-cut tomatoes. Postharvest Biology and Technology, 40(1), 15-25. https://doi.org/10.1016/j.postharvbio.2005.12.016

Lee, E., Berry, A. D., & Sargent, S. A. (2004). Impact thresholds to maximize postharvest quality of Roma-type tomato. Proceedings of the Florida State Horticultural Society, 117, 373-377.

León, K., Mery, D., Pedreschi, F., & León, J. (2006). Color measurement in L∗a∗b∗ units from RGB digital images. Food Research International, 39(10), 1084-1091. https://doi.org/10.1016/j.foodres.2006.03.006

Li, Z. (2013). The effect of compressibility, loading position and probe shape on the rupture probability of tomato fruits. Journal of Food Engineering, 119(3), 471-476. https://doi.org/10.1016/j.jfoodeng.2013.06.024

Li, Z., Miao, F., & Andrews, J. (2017). Mechanical Models of Compression and Impact on Fresh Fruits. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1296-1312. https://doi.org/10.1111/1541-4337.12296

Lien, C.-C., Ay, C., & Ting, C.-H. (2009). Non-destructive impact test for assessment of tomato maturity. Journal of Food Engineering, 91(3), 402-407. https://doi.org/10.1016/j.jfoodeng.2008.09.036

Mansourbahmani, S., Ghareyazie, B., Kalatejari, S., Mohammadi, R. S., & Zarinnia, V. (2017). Effect of post-harvest UV-C irradiation and calcium chloride on enzymatic activity and decay of tomato (Lycopersicon esculentum L.) fruit during storage. Journal of Integrative Agriculture, 16(9), 2093-2100. https://doi.org/10.1016/S2095-3119(16)61569-1

Mohsenin, N. N. (1986). Physical Properties of Plant and Animal Materials: Structure, Physical Characteristics, and Mechanical Properties. New York, US: Gordon and Breach.

Mohsenin, N. N., Jindal, V. K., & Manor, A. K. (1978). Mechanics of impact of a falling fruit on a cushioned surface. Transactions of the ASAE, 21(2), 594-600. https://doi.org/10.13031/2013.35350

Peck, G. M., Andrews, P. K., Reganold, J. P., & Fellman, J. K. (2006). Apple orchard productivity and fruit quality under organic, conventional, and integrated management. HortScience, 41(1), 99-107. https://doi.org/10.21273/HORTSCI.41.1.99

Quevedo, R., Díaz, O., Ronceros, B., Pedreschi, F., & Aguilera, J. M. (2009). Description of the kinetic enzymatic browning in banana (Musa cavendish) slices using non-uniform color information from digital images. Food Research International, 42(9), 1309-1314. https://doi.org/10.1016/j.foodres.2009.04.004

Ruiz-Altisent, M. (1991). Damage mechanisms in the handling of fruits. In J. Matthews (Eds.), Progress in agricultural physics and engineering (pp. 231-255) Willingford, UK: Commonwealth Agricultural Bureaux (CAB) International.

Sacilik, K., Keskin, R., & Elicin, A. K. (2006). Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of Food Engineering, 73(3), 231-238. https://doi.org/10.1016/j.jfoodeng.2005.01.025

Salim, M. M. R., Rashid, M. H., Hossain, M. M., & Zakaria, M. (2018). Morphological characterization of tomato (Solanum lycopersicum L.) genotypes. Journal of the Saudi Society of Agricultural Sciences, 19(3), 233-240. https://doi.org/10.1016/j.jssas.2018.11.001

Sanches, A. G., da Silva, M. B., Silva Moreira, E. G., dos Santos, E. X., Menezes, K. R. P., & Cordeiro, C. A. M. (2019). Ethylene absorber (KMnO4) in postharvest quality of pinha (Anona squamosa L.). Emirates Journal of Food and Agriculture, 31(8), 605-612. https://doi.org/10.9755/ejfa.2019.v31.i8.1992

Sargent, S. A., Brecht, J. K., & Zoellner, J. J. (1992). Sensitivity of tomatoes at mature-green and breaker ripeness stages to internal bruising. Journal of the American Society for Horticultural Science, 117(1), 119-123. https://doi.org/10.21273/JASHS.117.1.119

Schotte, S., De Belie, N., & De Baerdemaeker, J. (1999). Acoustic impulse-response technique for evaluation and modelling of firmness of tomato fruit. Postharvest Biology and Technology, 17(2), 105-115. https://doi.org/10.1016/S0925-5214(99)00041-1

Setareh, R., Mohammadi-Ghermezgoli, K., Ghaffari-Setoubadi, H., & Alizadeh-Salteh, S. (2023). The effectiveness of hot-air, infrared and hybrid drying techniques for lemongrass: appearance acceptability, essential oil yield, and volatile compound preservation. Scientific Reports, 13, 18820. https://doi.org/10.1038/s41598-023-44934-6

Shigley, J. E., Mischke, C. R., & Budynas, R. G. (2004). Mechanical Engineering Design. New York, US: McGraw-Hill.

Sinn, H. (1990). Mechanics of impact of cherries and plums falling on different kinds of catching surface. In International conference on agricultural mechanization, Zaragoza, Spain, 27-30 March 1990. Workshop on impact damage of fruits and vegetables. FIMA, 2, 67-77.

Stropek, Z., & Gołacki, K. (2019). Impact characteristics of pears. Postharvest Biology and Technology, 147, 100-106. https://doi.org/10.1016/j.postharvbio.2018.09.015

Sun, H., Wan, F., Huang, Y., Xu, Z., & Huang, X. (2024). Evaluation of a new method to assess blueberry bruising based on intracellular and extracellular water ratios. Scientia Horticulturae, 328, 112896. https://doi.org/10.1016/j.scienta.2024.112896

Van Linden, V. (2007). Identification of fruit parameters responsible for impact-bruising of tomatoes. Doctoral Dissertation. Katholieke Universiteit Leuven.

Van Linden, V., De Ketelaere, B., Desmet, M., & De Baerdemaeker, J. (2006a). Determination of bruise susceptibility of tomato fruit by means of an instrumented pendulum. Postharvest Biology and Technology, 40(1), 7-14. https://doi.org/10.1016/j.postharvbio.2005.12.008

Van Linden, V., Scheerlinck, N., Desmet, M., & De Baerdemaeker, J. (2006b). Factors that affect tomato bruise development as a result of mechanical impact. Postharvest Biology and Technology, 42(3), 260-270. https://doi.org/10.1016/j.postharvbio.2006.07.001

Van Linden, V., Sila, D. N., Duvetter, T., De Baerdemaeker, J., & Hendrickx, M. (2008). Effect of mechanical impact-bruising on polygalacturonase and pectinmethylesterase activity and pectic cell wall components in tomato fruit. Postharvest Biology and Technology, 47(1), 98-106. https://doi.org/10.1016/j.postharvbio.2007.06.006

Van Zeebroeck, M., Tijskens, E., Dintwa, E., Kafashan, J., Loodts, J., De Baerdemaeker, J., & Ramon, H. (2006a). The discrete element method (DEM) to simulate fruit impact damage during transport and handling: Case study of vibration damage during apple bulk transport. Postharvest Biology and Technology, 41(1), 92-100. https://doi.org/10.1016/j.postharvbio.2006.02.006

Van Zeebroeck, M., Tijskens, E., Dintwa, E., Kafashan, J., Loodts, J., De Baerdemaeker, J., & Ramon, H. (2006b). The discrete element method (DEM) to simulate fruit impact damage during transport and handling: Model building and validation of DEM to predict bruise damage of apples. Postharvest Biology and Technology, 41(1), 85-91. https://doi.org/10.1016/j.postharvbio.2006.02.007

Van Zeebroeck, M., Tijskens, E., Van Liedekerke, P., Deli, V., De Baerdemaeker, J., & Ramon, H. (2003). Determination of the dynamical behaviour of biological materials during impact using a pendulum device. Journal of Sound and Vibration, 266(3), 465-480. https://doi.org/10.1016/S0022-460X(03)00579-0

Van Zeebroeck, M., Van linden, V., Darius, P., De Ketelaere, B., Ramon, H., & Tijskens, E. (2007a). The effect of fruit factors on the bruise susceptibility of apples. Postharvest Biology and Technology, 46(1), 10-19. https://doi.org/10.1016/j.postharvbio.2007.03.017

Van Zeebroeck, M., Van linden, V., Darius, P., De Ketelaere, B., Ramon, H., & Tijskens, E. (2007b). The effect of fruit properties on the bruise susceptibility of tomatoes. Postharvest Biology and Technology, 45(2), 168-175. https://doi.org/10.1016/j.postharvbio.2006.12.022

Van Zeebroeck, M., Van linden, V., Ramon, H., De Baerdemaeker, J., Nicolaï, B. M., & Tijskens, E. (2007c). Impact damage of apples during transport and handling. Postharvest Biology and Technology, 45(2), 157-167. https://doi.org/10.1016/j.postharvbio.2007.01.015

Wang, W., Lu, H., Zhang, S., & Yang, Z. (2019). Damage caused by multiple impacts of litchi fruits during vibration harvesting. Computers and Electronics in Agriculture, 162, 732-738. https://doi.org/10.1016/j.compag.2019.04.037

Wang, W., Yang, Z., Lu, H., & Fu, H. (2018). Mechanical damage caused by fruit-to-fruit impact of litchis. IFAC-PapersOnLine, 51(17), 532-535. https://doi.org/10.1016/j.ifacol.2018.08.154

Weibel, F., Widmer, F., & Husistein, A. (2004). Comparison of production systems: integrated and organic apple production. Part III: Inner quality: composition and sensory. Obst-und Weinbau, 140, 10-13.

Zhang, X., & Brusewitz, G. H. (1991). Impact force model related to peach firmness. Transactions of the ASAE, 34(5), 2094-2098. https://doi.org/10.13031/2013.31843

Published

26-07-2024

How to Cite

Ghaffari-Setoubadi, H., Ghassemzadeh, H.-R., Mohammadi-Ghermezgoli, K., Rafat, S. A., & Halimi-Milani, O. (2024). Response of tomato fruit to consecutive impact loading. Journal of Aridland Agriculture, 10, 108–119. https://doi.org/10.25081/jaa.2024.v10.8944

Issue

Section

Articles