Germination of alfalfa (Medicago sativa L.) seeds in Desert soil after fertilization with raw and digested animal manure

Authors

  • Jamal Abubaker Department of Microbiology, Faculty of Science, Sebha University, P. O. Box 19631, Sebha, Libya, Research and Consulting Center, Sebha University, P. O. Box 18758, Sebha, Libya https://orcid.org/0000-0002-2304-1775
  • Abdelsalam Abobaker Department of Horticulture, Faculty of Agriculture, Sebha University, P. O. Box 18758, Sebha, Libya
  • Mohemed Essalem Department of Crops, Faculty of Agriculture, Sebha University, P. O. Box 18758, Sebha, Libya, Research and Consulting Center, Sebha University, P. O. Box 18758, Sebha, Libya
  • Najia Bertata Department of Microbiology, Faculty of Science, Sebha University, P. O. Box 19631, Sebha, Libya

DOI:

https://doi.org/10.25081/jaa.2024.v10.8760

Keywords:

Alfalfa seeds germination, Germination index, Poultry manure, Seed germination time, Sheep manure

Abstract

Animal manure has been approved as an appropriate soil fertilizer. However, the effect on seed germination, growth, and yield of crops still needs more evaluation across various agricultural ecosystems. A germination experiment was conducted to evaluate the performance of raw and digested sheep and poultry manure on alfalfa (Medicago sativa L.) seed germination in desert soil. Four sowing dates were evaluated in the experiment, i.e. directly, 10, 20, and 30 days after soil fertilization. The fertilizers were applied at rates corresponding to 50 and 100 kg Tot N ha-1. In addition, the response of germination to seed inoculation method was also assessed (Arabic gum as an adhesive solution and sawdust as a seed coating material). The germination was evaluated by determining seed germination time (SGT), time to reach maximum germination (TMG), germination index (GI), and final germination percentage (FGP). The results showed that sown seeds directly after fertilization with raw/digested sheep or poultry manure reduced and delayed seed germination. This was confirmed by all germination indices, long SGT, long TMG, low GI values, and a reduction in FGP. Moreover, when the seeds were sown 10 days after fertilization, all germination attributes were significantly (p<0.05) improved. Furthermore, the results revealed that the inoculation method used in the study had a positive effect on seed germination. To achieve better germination when using animal manure (raw or digested) as soil fertilizer, it is recommended to sow alfalfa seed 10 days after soil fertilization. Moreover, inoculating the seeds using Arabic gum as an adhesive solution and sawdust as a seed coating enhances germination in fertilized soil.

Downloads

Download data is not yet available.

References

Abubaker, J., Alaswd, A., Mohammed, N. S., El-Zeadani, H., & Khalifa, M. (2022a). Alfalfa (Medicago sativa L.) growth and yield in desert soil fertilized with raw and anaerobically digested cattle manure. Journal of Plant Nutrition, 45(7), 992-1003. https://doi.org/10.1080/01904167.2021.1994605

Abubaker, J., Elnesairy, N., & Ahmed, S. (2017): Effects of non-digested and anaerobically digested farmyard manures on wheat crop cultivated in desert soil. Journal of Aridland Agriculture, 3, 1-10. https://doi.org/10.19071/jaa.2017.v3.3127

Abubaker, J., Essalem, M., El-Zeadani, H., & Alghali, A. (2020). Effect of time interval between sowing and application of nondigested/digested cattle manure on germination and seedling growth of several wheat cultivars. Agriculture Research and Technology, 24(1), 556252. https://doi.org/10.19080/ARTOAJ.2020.22.556252

Abubaker, J., Mohammed, N. S., Essalem, M., Abobaker, A., & Khalifa, M. (2022b). Effect of seed inoculation method with Rhizobium species on the germination of alfalfa seeds (Medicago sativa L.). Sebha University Journal of Pure & Applied Sciences, 21(2), 135-140. https://doi.org/10.51984/jopas.v21i2.1876

Ahmad, A. A., Radovich, T. J. K., Nguyen, H. V., Uyeda, J., Arakaki, A., Cadby, J., Paull, P., Sugano, S., & Teves, G. (2016). Use of organic fertilizers to enhance soil fertility, plant growth, and yield in a tropical environment. In L. L. Marcelo & S. Sonia (Eds.), Organic Fertilizers London, UK: IntechOpen Limited. https://doi.org/10.5772/62529

Bacilio, M., Vazquez, P., & Bashan, Y. (2003). Alleviation of noxious effects of cattle ranch composts on wheat seed germination by inoculation with Azospirillum spp. Biology and Fertility of Soils, 38, 261-266. https://doi.org/10.1007/s00374-003-0650-1

Bremner, J. M., & Krogmeier, M. J. (1989): Evidence that the adverse effect of urea fertilizer on seed germination in soil is due to ammonia formed through hydrolysis of urea by soil urease. Proceedings of the National Academy of Sciences of the United States of America, 86(21), 8185-8188. https://doi.org/10.1073/pnas.86.21.8185

Buyanovsky, G., Dicke, M., & Berwick, P. (1982). Soil environment and activity of soil microflora in the Negev desert. Journal of Arid Environments, 5(1), 13-28. https://doi.org/10.1016/S0140-1963(18)31459-9

Dastanpoor, N., Fahimi, H., Shariati, M., Davazdahemami, S., & Hashemi, S. M. M. (2013). Effects of hydropriming on seed germination and seedling growth in sage (Salvia officinalis L.). African Journal of Biotechnology, 12(11), 1223-1228.

de Tunes, L. M., Avelar, S. A. G., Barros, A. C. S. A., Pedroso, D. C., Muniz, M. F. B., & de Menezes, N. L. (2012). Critical levels of organic acids on seed germination and seedling growth of wheat. Revista Brasileira de Sementes, 34(3), 366-372.

Du, T.-Y., He, H.-Y., Zhang, Q., Lu, L., Mao, W.-J., Zhai, M.-Z. (2022): Positive effects of organic fertilizers and biofertilizers on soil microbial community composition and walnut yield. Applied Soil Ecology, 175, 104457. https://doi.org/10.1016/j.apsoil.2022.104457

Dwevedi, A., Kumar, P., Kumar, P., Kumar, Y., Sharma, Y. K., & Kayastha, A. M. (2017). Soil sensors: detailed insight into research updates, significance, and future prospects. In A. M. Grumezescu (Eds.), New Pesticides and Soil Sensors (pp. 561-594) Cambridge, US: Academic Press. https://doi.org/10.1016/B978-0-12-804299-1.00016-3

Ellis, R. H., Hong, T. D., & Roberts, E. H., (1985). Handbook of seed technology for genebanks. Volume I. Principles and methodology. Rome: International Board for Plant Genetic Resources.

El-Zeadani, H., Abubaker, J., Essalem, M., Alghali, A. (2018). Germination of several wheat cultivars in desert soil after amendment with raw and digested poultry manure with and without combination with mineral fertilizer. International Journal of Recycling of Organic Waste in Agriculture, 7, 335-343. https://doi.org/10.1007/s40093-018-0219-5

Esmaeilian, Y., Amiri, M. B., Tavassoli, A., Caballero-Calvo, A., & Rodrigo-Comino, J. (2022). Replacing chemical fertilizers with organic and biological ones in transition to organic farming systems in saffron (Crocus sativus) cultivation. Chemosphere, 307, 135537. https://doi.org/10.1016/j.chemosphere.2022.135537

Ezemagu, I. G., Ejimofor, M. I., Menkiti, M. C., & Diyoke, C. (2021). Biofertilizer production via composting of digestate obtained from anaerobic digestion of post biocoagulation sludge blended with saw dust: Physiochemical characterization and kinetic study. Environmental Challenges, 5, 100288. https://doi.org/10.1016/j.envc.2021.100288

Farooq, M., Basra, S. M. A., Ahmad, N., & Hafeez, K. (2005). Thermal hardening: A new seed vigor enhancement tool in rice. Journal of Integrative Plant Biology, 47(2), 187-193. https://doi.org/10.1111/j.1744-7909.2005.00031.x

García-González, M. C., Vanotti, M. B., & Szogi, A. A. (2016). Recovery of ammonia from anaerobically digested manure using gas-permeable membranes. Scientia Agricolao, 73(5), 434-438. https://doi.org/10.1590/0103-9016-2015-0159

Gupta, N., & Gupta, U. (2011). Effect of anaerobically digested slurry of cowdung and kitchen waste on the seed quality in Okra (Abelmoschus Esculentus L). Journal of Advanced Laboratory Research in Biology, 2(4), 158-160.

Halmer, P. (2008). Seed technology and seed enhancement. ISHS Acta Horticulturae, 771, 17-26. https://doi.org/10.17660/ActaHortic.2008.771.1

Hati, K., & Bandyoopadhay, K. (2011). Fertilizers (mineral, organic), effect on soil physical properties. In J. Gliński, J. Horabik & J. Lipiec (Eds.), Encyclopedia of Agrophysics (pp. 296-299) Netherlands, Dordrecht: Springer. https://doi.org/10.1007/978-90-481-3585-1_201

Hillel, D. (2008). Soil fertility and plant nutrition. In D. Hillel (Eds.), Soil in the Environment (pp. 151-162) San Diego, California: Academic Press.

Jia, S., Yuan, D., Li, W., He, W., Raza, S., Kuzyakov, Y., Zamanian, K., & Zhao, X. (2022). Soil chemical properties depending on fertilization and management in China: A Meta-analysis. Agronomy, 12(10), 2501. https://doi.org/10.3390/agronomy12102501

Kader, M. A. (2005). A comparison of seed germination calculation formulae and the associated interpretation of resulting data. Journal & Proceedings of the Royal Society of New South Wales, 138, 65-75.

Kaparaju, P., Rintala, J., & Oikari, A. (2012). Agricultural potential of anaerobically digested industrial orange waste with and without aerobic post-treatment. Environmental Technology, 33(1), 85-94. https://doi.org/10.1080/09593330.2011.551839

Li, F., Yuan, Y., Shimizu, N., Magaña, J., Gong, P., & Na, R. (2023a). Impact of organic fertilization by the digestate from by-product on growth, yield and fruit quality of tomato (Solanum lycopersicon) and soil properties under greenhouse and field conditions. Chemical and Biological Technologies in Agriculture, 10, 70. https://doi.org/10.1186/s40538-023-00448-x

Li, Y., Zhu, J., Tang, Y., Shi, X., Anwar, S., Wang, J., Gao, L., & Zhang, J. (2023b). Impact of varying mass concentrations of ammonia nitrogen on biogas production and system stability of anaerobic fermentation. Agriculture, 13(8), 1645. https://doi.org/10.3390/agriculture13081645

Lin, L., Xu, F., Ge, X., & Li, Y. (2018). Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renewable and Sustainable Energy Reviews, 89, 151-167. https://doi.org/10.1016/j.rser.2018.03.025

Lošák, T., Zatloukalová, A., Szostková, M., Hlušek, J., Fryč, J., & Vítěz, T. (2011). Comparison of the effectiveness of digestate and mineral fertilisers on yields and quality of kohlrabi (Brassica oleracea, L.). Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59(3), 117-122. https://doi.org/10.11118/actaun201159030117

Powlson, D. S., Hirsch, P. R., & Brookes, P. C. (2001). The role of soil microorganisms in soil organic matter conservation in the tropics. Nutrient Cycling in Agroecosystems, 61, 41-51. https://doi.org/10.1023/a:1013338028454

Saad, A. M. A., Shariff, N. M., & Gairola, S. (2011). Nature and causes of land degradation and desertification in Libya: Need for sustainable land management. African Journal of Biotechnology, 10(63), 13680-13687. https://doi.org/10.5897/AJB11.1235

Savci, S. (2012). Investigation of effect of chemical fertilizers on environment. APCBEE Procedia, 1, 287-292. https://doi.org/10.1016/j.apcbee.2012.03.047

Šerá, B., Novák, F. (2011): The effect of humic substances on germination and early growth of Lamb’s Quarters (Chenopodium album agg.). Biologia, 66(3), 470-476. https://doi.org/10.2478/s11756-011-0037-y

Song, S., Lim, J. W., Lee, J. T. E., Cheong, J. C., Hoy, S. H., Hu, Q., Tan, J. K. N., Chiam, Z., Arora, S., Lum, T. Q. H., Lim, E. Y., Wang, C.-H., Tan, H. T. W., & Tong, Y. W. (2021). Food-waste anaerobic digestate as a fertilizer: The agronomic properties of untreated digestate and biochar-filtered digestate residue. Waste Management, 136, 143-152. https://doi.org/10.1016/j.wasman.2021.10.011

Wan, X., Wu, W., Li, C., Liu, Y., Wen, X., & Liao, Y. (2016). Soil ammonia volatilization following urea application suppresses root hair formation and reduces seed germination in six wheat varieties. Environmental and Experimental Botany, 132, 130-139. https://doi.org/10.1016/j.envexpbot.2016.08.010

Ye, L., Zhao, X., Bao, E., Li, J., Zou, Z., & Cao, K. (2020). Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports, 10, 177. https://doi.org/10.1038/s41598-019-56954-2

Zhao, Y., Lu, G., Jin, X., Wang, Y., Ma, K., Zhang, H., Yan, H., & Zhou, X. (2022). Effects of microbial fertilizer on soil fertility and alfalfa rhizosphere microbiota in alpine grassland. Agronomy, 12(7), 1722. https://doi.org/10.3390/agronomy12071722

Zheng, S., Yin, K., & Yu, L. (2022). Factors influencing the farmer's chemical fertilizer reduction behavior from the perspective of farmer differentiation. Heliyon, 8(12), e11918. https://doi.org/10.1016/j.heliyon.2022.e11918

Zurqani, H. A., Mikhailova, E. A., Post, C. J., Schlautman, M. A., & Elhawej, A. R. (2019). A review of Libyan soil databases for use within an ccosystem services framework. Land, 8(5), 82. https://doi.org/10.3390/land8050082

Published

22-05-2023

How to Cite

Abubaker, J., Abobaker, A., Essalem, M., & Bertata, N. (2023). Germination of alfalfa (Medicago sativa L.) seeds in Desert soil after fertilization with raw and digested animal manure. Journal of Aridland Agriculture, 10, 65–73. https://doi.org/10.25081/jaa.2024.v10.8760

Issue

Section

Articles