Potential of Bacillus stercoris B.PNR2 to stimulate growth of rice and waxy corn under atrazine-contaminated soil

Authors

  • Khanitta Somtrakoon Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand
  • Preamkamon Prasertsom 1Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand https://orcid.org/0009-0000-0515-6782
  • Aphidech Sangdee 1Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand https://orcid.org/0000-0003-4401-8985
  • Rattana Pengproh Department of Biology, Faculty of Science, Buriram Rajabhat University, Buriram Province, 31000, Thailand https://orcid.org/0009-0006-5727-889X
  • Waraporn Chouychai Department of Science, Faculty of Science and Technology, Nakhonsawan Rajabhat University, Nakhon Sawan, 60000, Thailand https://orcid.org/0000-0001-5072-6027

DOI:

https://doi.org/10.25081/jaa.2024.v10.8614

Keywords:

Atrazine, Bacillus subtilis, Corn, Plant growth-promoting bacteria, Phytotoxicity, Rice

Abstract

The presence of atrazine residue in agricultural soil may affect crop growth and the activity of plant growth-promoting bacteria. Therefore, this study investigated the impact of atrazine contamination on indole-3-acetic acid (IAA) production by Bacillus stercoris B.PNR2. Subsequently, the ability of B. stercoris B.PNR2 to stimulate the seedling growth of rice cultivars RD6 and Leum Pua, as well as the waxy corn cultivar Muang Tam, under atrazine contamination, was determined. The results showed that B. stercoris B.PNR2 produced IAA under various atrazine concentrations, and atrazine was not toxic to B. stercoris B.PNR2 cells. Atrazine at 20 mg/kg of soil did not affect the shoot and root dry weight of rice cultivars RD6 and Leum Pua, as well as the waxy corn cultivar Muang Tam grown in atrazine-contaminated soil without receiving a bacterial inoculum. The application of B. stercoris B.PNR2 did not stimulate the germination and growth of any of the plants used in this study. The application of B. stercoris B.PNR2 decreased the shoot and root dry weight of waxy corn grown under atrazine-contaminated soil. Additionally, the chlorophyll b and total chlorophyll content in rice cultivar RD6, grown under atrazine-contaminated soil, decreased to only 162.6 ± 4.2 and 616.0 ± 55.8 μg/g fresh weight, which was related to the increase in proline content to 343.6 ± 41.6 μg/g fresh weight. In conclusion, it can be stated that soaking seeds with B. stercoris B.PNR2 was not an appropriate means of inoculation to stimulate the growth of plants in this study.

Downloads

Download data is not yet available.

References

Ábrahám, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010). Methods for determination of proline in plants. In R. Sunkar (Eds.), Plant Stress Tolerance. Methods in Molecular Biology (Vol. 639, pp. 317-331) Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-60761-702-0_20

Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 178-181. https://doi.org/10.1016/j.micres.2006.04.001

Arora, S., Mukherjee, I., Kumar, A., & Garg, D. K. (2014). Comparative assessment of pesticide residues in grain, soil, and water from IPM and non-IPM trials of basmati rice. Environmental Monitoring and Assessment, 186, 361-366. https://doi.org/10.1007/s10661-013-3380-3

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060

Breidenbach, B., Brenzinger, K., Brandt, F. B., Blaser, M. B., & Conrad, R. (2017). The effect of crop rotation between wetland rice and upland maize on the microbial communities associated with roots. Plant and Soil, 419, 435-445. https://doi.org/10.1007/s11104-017-3351-5

Brighenti, A. M., Moraes, V. J., Oliveira Jr., R. S., Gazziero, D. L. P., Voll, E., & Gomes, J. A. (2002). Persistence and phytotoxicity of the herbicide atrazine applied on corn crop on successive sunflower crop. Planta Daninha, 20(2), 291-297. https://doi.org/10.1590/S0100-83582002000200016

Burhan, N., & Shaukat, S. S. (2000). Effects of atrazine and phenolic compounds on germination and seedling growth of some crop plants. Pakistan Journal of Biological Sciences, 3(2), 269-274. https://doi.org/10.3923/pjbs.2000.269.274

Cherif, M., Raveton, M., Picciocchi, A., Ravanel, P., & Tissu, M. (2001). Atrazine metabolism in corn seedlings. Plant Physiology and Biochemistry, 39(7-8), 665-672. https://doi.org/10.1016/S0981-9428(01)01281-5

Chuanren, D., Bochu, W., Wanqian, L., Jing, C., Jie, L., & Huan, Z. (2004). Effect of chemical and physical factors to improve the germination rate of Echinacea angustifolia seeds. Colloids and Surfaces B: Biointerfaces, 37(3-4), 101-105. https://doi.org/10.1016/j.colsurfb.2004.07.003

Din, B. U., Amna, Rafiquee, M., Javed, M. T., Kamran, M. A., Mehmood, S., Khan, M., Sultan, T., Munis, M. F. H., & Chaudhary, H. J. (2020). Assisted phytoremediation of chromium spiked soils by Sesbania sesban in association with Bacillus xiamenensis PM14: A biochemical analysis. Plant Physiology and Biochemistry, 146, 249-258. https://doi.org/10.1016/j.plaphy.2019.11.010

Fiodor, A., Ajijah, N., Dziewit, L., & Pranaw, K. (2023). Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Frontiers in Microbiology, 14, 1142966. https://doi.org/10.3389/fmicb.2023.1142966

He, H., Liu, Y., You, S., Liu, J., Xiao, H., & Tu, Z. (2019). A review on recent treatment technology for herbicide atrazine in contaminated environment. International Journal of Environmental Research and Public Health, 16(24), 5129. https://doi.org/10.3390/ijerph16245129

Hossain, M. A., Hossain, M. S., & Akter, M. (2023). Challenges faced by plant growth-promoting bacteria in field-level applications and suggestions to overcome the barriers. Physiological and Molecular Plant Pathology, 126, 102029. https://doi.org/10.1016/j.pmpp.2023.102029

James, K., & Singh, D. K. (2018). Assessment of atrazine decontamination by epiphytic rootbacteria isolated from emergent hydrophytes. Annals of Microbiology, 68, 953-962. https://doi.org/10.1007/s13213-018-1404-5

Jiang, Z., Jiang, D., Zhou, Q., Zheng, Z., Cao, B., Meng, Q., Qu, J., Wang, Y., & Zhang, Y. (2020). Enhancing the atrazine tolerance of Pennisetum americanum (L.) K. Schum by inoculating with indole-3-acetic acid-producing strain Pseudomonas chlororaphis PAS18. Ecotoxicology and Environmental Safety, 202, 110854. https://doi.org/10.1016/j.ecoenv.2020.110854

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: the pigments of photosynthetic biomembranes. In R. Douce & L. Packer (Eds.), Methods in Enzymology (Vol. 148, pp. 350-382) Cambridge, US: Academic Press Inc. https://doi.org/10.1016/0076-6879(87)48036-1

Lopes, M. J. S., Dias-Filho, M. B., & Gurgel, E. S. C. (2021). Successful plant growth promoting microbes: Inoculation methods and abiotic factors. Frontiers in Sustainable Food Systems, 5, 606454. https://doi.org/10.3389/fsufs.2021.606454

Ma, L. Y., Zhang, N., Liu, J. T., Zhai, X. Y., Lv, Y., Lu, F. F., & Yang, H. (2019). Uptake of atrazine in a paddy crop activates an epigenetic mechanism for degrading the pesticide in plants and environment. Environment International, 131, 105014. https://doi.org/10.1016/j.envint.2019.105014

Nwani, C. D., Lakra, W. S., Nagpure, N. S., Kumar, R., Kushwaha, B., & Srivastava, S. K. (2010). Toxicity of the herbicide atrazine: effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa Punctatus (Bloch). International Journal of Environmental Research and Public Health, 7(8), 3298-3312. https://doi.org/10.3390/ijerph7083298

Pengproh, R., Thanyasiriwat, T., Sangdee, K., Saengprajak, J., Kawicha, P., & Sangdee, A. (2023). Evaluation and genome mining of Bacillus stercoris isolate B.PNR1 aspotential agent for Fusarium wilt control and growth promotion of tomato. The Plant Pathology Journal, 39(5), 430-448. https://doi.org/10.5423/PPJ.OA.01.2023.0018

Promkhambut, A., Yokying, P., Woods, K., Fisher, M., Yong, M. L., Manorom, K., Baird, I. G., & Fox, J. (2023). Rethinking agrarian transition in Southeast Asia through rice farming in Thailand. World Development, 169, 106309. https://doi.org/10.1016/j.worlddev.2023.106309

Ramakrishna, W., Yadava, R., & Li, K. (2019). Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology, 138, 10-18. https://doi.org/10.1016/j.apsoil.2019.02.019

Reis, M. R., Aquino, L. Â., Melo, C. A. D., Silva, D. V., & Dias, R. C. (2018). Carryover of tembotrione and atrazine affects yield and quality of potato tubers. Acta Scientiarum. Agronomy, 40(1), e35355. https://doi.org/10.4025/actasciagron.v40i1.35355

Riyanto, D., Yustisia, Anshori, A., & Srihartanto, E. (2021). Application of rice-corn intercropping as an optimization of the land use utilization and increasing of farmer income in Playen, Gunungkidul. E3S Web of Conferences, 232, 01033. https://doi.org/10.1051/e3sconf/202123201033

Rostami, S., Jafari, S., Moeini, Z., Jaskulak, M., Keshtgar, L., Badeenezhad, A., Azhdarpoor, A., Rostami, M., Zorena, K., & Dehghani, M. (2021). Current methods and technologies for degradation of atrazine in contaminated soil and water: A review. Environmental Technology & Innovation, 24, 102019. https://doi.org/10.1016/j.eti.2021.102019

Rudolph, N., Labuschagne, N., & Aveling, T. A. S. (2015). The effect of plant growth promoting rhizobacteria on seed germination and seedling growth of maize. Seed Science and Technology, 43(3), 507-518. https://doi.org/10.15258/sst.2015.43.3.04

Salem, R. E. M. E., & El-Sobki, A. E. A. (2021). Physiological and biochemical parameters as an index for herbicides damage in wheat plants. Egyptian Academic Journal of Biological Sciences, 13(2), 25-35. https://doi.org/10.21608/eajbsf.2021.182445

Sánchez, V., López-Bellido, F. J., Cañizares, P., & Rodríguez, L. (2017). Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils. Chemosphere, 185, 119-126. https://doi.org/10.1016/j.chemosphere.2017.07.013

Sardoei, A. S., & Rahbarian, P. (2014). Effect of different media on chlorophyll and carotenoids of ornamental plants under system mist. European Journal of Experimental Biology, 4(2), 366-369.

Singh, S., Kumar, V., Chauhan, A., Datta, S., Wani, A. B., Singh, N., & Singh, J. (2018). Toxicity, degradation and analysis of the herbicide atrazine. Environmental Chemistry Letters, 16, 211-237. https://doi.org/10.1007/s10311-017-0665-8

Soltani, N., Mashhadi, H. R., Mesgaran, M. B., Cowbrough, M., Tardif, F. J., Chandler, K., Nurse, R. E., Swanton, C. J., & Sikkema, P. H. (2011). The effect of residual corn herbicides on injury and yield of soybean seeded in the same season. Canadian Journal of Plant Science, 91(3), 571-576. https://doi.org/10.4141/CJPS10110

Tripathi, P., Yadav, R., Das, P., Singh, A., Singh, R. P., Kandasamy, P., Kalra, A., & Khare, P. (2021). Endophytic bacterium CIMAP-A7 mediated amelioration of atrazine induced phytotoxicity in Andrographis paniculate. Environmental Pollution, 287, 117635. https://doi.org/10.1016/j.envpol.2021.117635

Xu, Y., Liu, K., Yao, S., Zhang, Y., Zhang, X., He, H., Feng, W., Ndzana, G. M., Chenu, C., Olk, D. C., Mao, J., & Zhang, B. (2022). Formation efficiency of soil organic matter from plant litter is governed by clay mineral type more than plant litter quality. Geoderma, 412, 115727. https://doi.org/10.1016/j.geoderma.2022.115727

Yang, L., & Zhang, Y. (2020). Effects of atrazine and its two major derivatives on the photosynthetic physiology and carbon sequestration potential of a marine diatom. Ecotoxicology and Environmental Safety, 205, 111359. https://doi.org/10.1016/j.ecoenv.2020.111359

Zhang, J. J., Gau, S., Xu, J. Y., Lu, Y. C., Lu, F. F., Ma, L. Y., Su, X. N., & Yang, H. (2017). Degrading and phytoextracting atrazine residues in rice (Oryza sativa) and growth media intensified by a phase II mechanism modulator. Environmental Science & Technology, 51(19), 11258-11268. https://doi.org/10.1021/acs.est.7b02346

Zhu, H., Zhou, H., Ren, Z., & Liu, E. (2022). Control of Magnaporthe oryzae and rice growth promotion by Bacillus subtilis JN005. Journal of Plant Growth Regulation, 41, 2319-2327. https://doi.org/10.1007/s00344-021-10444-w

Zhu, J., Fu, L., Jin, C., Meng, Z., & Yang, N. (2019). Study on the isolation of two atrazine-degrading bacteria and the development of a microbial agent. Microorganisms, 7(3), 80. https://doi.org/10.3390/microorganisms7030080

Published

13-03-2024

How to Cite

Somtrakoon, K., Prasertsom, P. ., Sangdee, A. ., Pengproh, R. ., & Chouychai, W. . (2024). Potential of Bacillus stercoris B.PNR2 to stimulate growth of rice and waxy corn under atrazine-contaminated soil. Journal of Aridland Agriculture, 10, 20–27. https://doi.org/10.25081/jaa.2024.v10.8614

Issue

Section

Articles