Characterization of ancient ceramic shreds: Insights into firing conditions and manufacturing technology

Authors

  • S. Mammadov Institute of Radiation Problems, Azerbaijan National Academy of Sciences, 9, B.Vahabzade str. Baku 1143, Azerbaijan
  • M. Gurbanov Institute of Radiation Problems, Azerbaijan National Academy of Sciences, 9, B.Vahabzade str. Baku 1143, Azerbaijan https://orcid.org/0000-0003-3321-1026
  • A. Ahadova Institute of Radiation Problems, Azerbaijan National Academy of Sciences, 9, B.Vahabzade str. Baku 1143, Azerbaijan https://orcid.org/0000-0001-9173-9537
  • A. Abishov Institute of Radiation Problems, Azerbaijan National Academy of Sciences, 9, B.Vahabzade str. Baku 1143, Azerbaijan https://orcid.org/0000-0003-2467-4344

DOI:

https://doi.org/10.25081/rrst.2023.15.8501

Keywords:

Thermal analysis, X-ray diffraction, Clays, Ancient ceramic, Firing temperature

Abstract

Four ancient ceramic shreds from the archaeological site Leletepe in the Fizuli region of the Republic of Azerbaijan and two local raw ceramic pastes were characterized by powder X-ray diffraction (PXRD) and thermal analysis (TG-DTG) techniques. XRD analysis of ceramic sherds reveals that all investigated samples contain similar minerals: quartz, feldspar, and clay. Three samples out of four contain calcite. Based on the traditional approach, it has been assumed that the firing process in these samples stopped before 700 °C. The mass loss ratios of samples of ancient ceramics also indicate that reversible dehydroxylation took place in all four samples, thus indicating the initial mild firing conditions. The summary of all the applied methods indicates that the ceramic samples were made using a similar manufacturing technology. According to XRD analysis, samples N1 and N4 contain diopside, and samples N2 and N3 contain maghemite, indicating the different origins of the ceramic shreds. Analysis of the raw ceramic mass also did not reveal the presence of these minerals, which may indicate a discrepancy between the origin of ancient ceramic sherds and modern ones.

Downloads

Download data is not yet available.

References

Arnold, D. E. (2000). Does the Standardization of Ceramic Pastes Really Mean Specialization? Journal of Archaeological Method and Theory, 7(4), 333-375.

Barrett, G. T. (2015). Rehydroxylation Dating : Assessment for Archaeological Application. Doctoral Dissertation, Queen’s University Belfast.

Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O., & De La Torre, M. J. (2001). Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 13(3), 621-634. https://doi.org/10.1127/0935-1221/2001/0013-0621

Drebushchak, V. A., Mylnikova, L. N., & Drebushchak, T. N. (2011). The mass-loss diagram for the ancient ceramics. Journal of Thermal Analysis and Calorimetry, 104, 459-466. https://doi.org/10.1007/s10973-010-1230-x

Drebushchak, V. A., Mylnikova, L. N., & Drebushchak, T. N. (2018). Thermoanalytical investigations of ancient ceramics. Journal of Thermal Analysis and Calorimetry, 133, 135-176. https://doi.org/10.1007/s10973-018-7244-5

Drebushchak, V. A., Mylnikova, L. N., & Molodin, V. I. (2007). Thermogravimetric investigation of ancient ceramics. Journal of Thermal Analysis and Calorimetry, 90, 73-79. https://doi.org/10.1007/s10973-007-8478-9

Drebushchak, V. A., Mylnikova, L. N., Drebushchak, T. N., & Boldyrev, V. V. (2005). The investigation of ancient pottery. Journal of Thermal Analysis and Calorimetry, 82, 617-626. https://doi.org/10.1007/s10973-005-6913-3

Fajnor, V. Š., & Jesenák, K. (1996). Differential thermal analysis of montmorillonite. Journal of Thermal Analysis, 46, 489-493. https://doi.org/10.1007/BF02135026

Gallet, Y., & Le Goff, M. (2015). Rehydration and Rehydroxylation in Ancient Ceramics: New Constraints from Mass Gain Analyses Versus Annealing Temperatures. Journal of the American Ceramic Society, 98(9), 2738-2744. https://doi.org/10.1111/jace.13674

Hubbard, C. R., & Snyder, R. L. (1988). RIR - Measurement and Use in Quantitative XRD. Powder Diffraction, 3(2), 74-77. https://doi.org/10.1017/S0885715600013257

Iordanidis, A., Garcia-Guinea, J., Strati, A., Gkimourtzina, A., & Papoulidou, A. (2011). Thermal, mineralogical and spectroscopic study of plasters from three post-Byzantine churches from Kastoria (northern Greece). Journal of Thermal Analysis and Calorimetry, 103, 577-586. https://doi.org/10.1007/s10973-010-1055-7

Kalinkin, A. M., Kalinkina, E. V., & Zalkind, O. A. (2009). Mechanosorption of carbon dioxide by Ca- and Mg-containing silicates and alumosilicates. Sorption of CO2 and structure-related chemical changes. Colloid Journal, 71, 185-192. https://doi.org/10.1134/S1061933X09020069

Kalinkin, A. M., Kalinkina, E. V., Zalkind, O. A., & Makarova, T. I. (2008). Mechanochemical interaction of alkali metal metasilicates with carbon dioxide: 2. The influence of thermal treatment on the properties of activated samples. Colloid Journal, 70, 42-47. https://doi.org/10.1134/s1061933x08010079

Kloužková, A., Kohoutková, M., Zemenová, P., & Mazač, Z. (2014). Characterisation of a prehistorical ceramic object. Journal of Thermal Analysis and Calorimetry, 116, 641-645. https://doi.org/10.1007/s10973-014-3712-8

Medeghini, L., Mignardi, S., & De Vito, C. (2022). When the time stops: The “Grotta dei Cocci” (Terni, Italy). Boletin de La Sociedad Espanola de Ceramica y Vidrio, 61(2), 169-181. https://doi.org/10.1016/j.bsecv.2020.09.003

Meyvel, S., Sathya, P., & Velraj, G. (2012). Thermal characterization of archaeological pot sherds recently excavated in Nedunkur , Tamilnadu , India. Ceramica, 58(347), 338-341. https://doi.org/10.1590/S0366-69132012000300009

Molodin, V. I., Mylinkova, L. N., Shtertser, N. V., Durakov, I. A., & Drebushchak, V. A. (2019). Thermogravimetry in the Studies of Ancient Technical Ceramics. Chemistry for Sustainable Development, 27(1), 101-108. https://doi.org/10.15372/csd20190116

Ortega, L. A., Zuluaga, M. C., Alonso-Olazabal, A., Murelaga, X., & Alday, A. (2010). Petrographic and geochemical evidence for long-standing supply of raw materials in neolithic pottery (mendandia site, spain). Archaeometry, 52(6), 987-1001. https://doi.org/10.1111/j.1475-4754.2010.00523.x

Papadopoulou, D. N., Lalia-Kantouri, M., Kantiranis, N., & Stratis, J. A. (2006). Thermal and mineralogical contribution to the ancient ceramics and natural clays characterization. Journal of Thermal Analysis and Calorimetry, 84, 39-45. https://doi.org/10.1007/s10973-005-7173-y

Shoval, S., Boudeulle, M., & Panczer, G. (2011). Identification of the thermal phases in firing of kaolinite to mullite by using micro-Raman spectroscopy and curve-fitting. Optical Materials, 34(2), 404-409. https://doi.org/10.1016/j.optmat.2011.08.031

Stubna, I., Podoba, R., Bacík, P., & Podobník, Ľ. (2013). Romanesque and Gothic bricks from church in Pác - estimation of the firing temperature. Epitoanyag - Journal of Silicate Based and Composite Materials, 65(2), 48-51. https://doi.org/10.14382/epitoanyag-jsbcm.2013.11

Taylor, R. M., & Schwertmann, U. (1974). Maghemite in Soils and Its Origin II. Maghemite Syntheses at Ambient Temperature and pH 7. Clay Materials, 10(4), 299-310. https://doi.org/10.1180/claymin.1974.010.4.08

Vlase, D., Rogozea, O., Moşoiu, C., Vlase, G., Lazău, R., & Vlase, T. (2019). Thermoanalytical investigations of some ceramics dated from the Neolithic period, discovered at Oxenbrickel, Sânandrei, Romania. Journal of Thermal Analysis and Calorimetry, 138, 2145-2157. https://doi.org/10.1007/s10973-019-08767-8

Weaver, I., Meyers, G. E., Mertzman, S. A., Sternberg, R., & Didaleusky, J. (2013). Geochemical evidence for integrated ceramic and roof tile industries at the Etruscan site of Poggio Colla, Italy. Mediterranean Archaeology and Archaeometry, 13(1), 31-43.

Yuan, C., Zhao, C., Wang, F., & Yuan, S. (2022). Characterization of ceramic from the Early Bronze Age Xinzhai site, Henan Province, China, by using a multi-analytical approach. Journal of Archaeological Science: Reports, 44, 103551. https://doi.org/10.1016/j.jasrep.2022.103551

Published

07-09-2023

How to Cite

Mammadov, S., Gurbanov, M., Ahadova, A., & Abishov, A. (2023). Characterization of ancient ceramic shreds: Insights into firing conditions and manufacturing technology. Recent Research in Science and Technology, 15, 12–17. https://doi.org/10.25081/rrst.2023.15.8501

Issue

Section

Articles