In vitro antidiabetic evaluation of Bombax buonopozense methanol leaf extract
DOI:
https://doi.org/10.25081/ripb.2024.v14.9207Keywords:
Diabetes, Bombax buonopozense, α-amylase, α-glucosidaseAbstract
Diabetes mellitus (DM) is a major worldwide health burden that requires research into cost-effective treatment alternatives. It has been claimed that herbal medicines, have improved glucose metabolism in diabetics. It has been showed that several plant extracts are useful in preserving glucose homeostasis. Therefore, the present study aimed to evaluate the phytochemical and antidiabetic activities of Bombax buonopozense methanol leaf extracts. Standard methods were used for the identification of alkaloids, tannins, flavonoids, saponins, phenolics, cardiacglycosides and steroids. The enzyme inhibitory activities of the extracts of B. buonopozense was evaluated on α-amylase and α-glucosidase. The crude leaf extract of B. buonopozense exhibited a more effective inhibition on α-glucosidase with IC50 (Half maximal inhibitory concentration) values 888.20±35.06 μg/mL when compared to control (ascorbic acid) with values 1076±2.77 μg/mL. Fractions of ethyl acetate showed lower inhibitory property of alpha glucosidase with IC50 value 18.44±2.63 μg/mL compared to the control (ascorbic acid with IC50 value 16325±1318 μg/mL). This study showed the scientific basis for the traditional therapeutic usage of B. buonopozense by proven its antidiabetic activity in vitro. This is the first time that B. buonopozense’s antidiabetic efficacy and possible mechanisms have been documented.
Downloads
References
Abomughaid, M. M., El-Shibani, F. A. A., Abdulkarim, A. K., Abouzied, A. S., Sulaiman, G. M., Abomughayedh, A. M., Abdulsayid, M. M. F., Albukhaty, S., Elrmali, N., Al-Saffar, A. Z., El-khawaga, H. A., & Mohammed, H. A. (2024). Phytochemicals profiling, in vitro and in vivo antidiabetic activity, and in silico studies on Ajuga iva (L.) Schreb.: A comprehensive approach. Open Chemistry, 22(1), 20230191. https://doi.org/10.1515/chem-2023-0191
Adebayo, A. H., Zeng, G.-Z., Fan, J.-T., Ji, C.-J., He, W.-J., Xu, J.-J., Akindahunsi, A. A., Kela, R., & Tan, N.-H. (2010) Biochemical, haematological and histopathological studies of extract of Ageratum conyzoides L. in Sprague Dawley rats. Journal of Medicinal Plants Research, 4(21), 2264-2272.
Airaodion, A. I., Ibrahim, A. H., Ogbuagu, U., Ogbuagu, E. O., Awosanya, O. O., Akinmolayan, J. D., Njoku, O. C., Obajimi, O. O., Adeniji, A. R., & Adekale, O. A. (2019). Evaluation of phytochemical content and antioxidant potential of Ocimum gratissimum and Telfairia occidentalis leaves. Asian Journal of Research in Medical and Pharmaceutical Sciences, 7(1), 1-11. https://doi.org/10.9734/ajrimps/2019/v7i130110
Akter, S., Ali, H., Shati, A. A., Alfaifi, M. Y., Elbehairi, S. E. I., Sayyed, R. Z., &Yeasmin, T (2024). Antidiabetic activity of methanolic extract of Hibiscus sabdariffa Linn. fruit in alloxan-induced Swiss albino diabetic mice. Open Agriculture, 9(1), 20220243. https://doi.org/10.1515/opag-2022-0243
Benchaachoua, A., Bessam, H. M., & Saidi, I. (2018). Effects of different extraction methods and solvents on the phenolic composition and antioxidant activity of Silybum marianum leaves extracts. International Journal of Medical Science and Clinical Invention, 5(3), 3641-3647. https://doi.org/10.18535/ijmsci/v5i3.16
Builder, M. I., Joseph, S. O., Olugbemi, T. O., & Akande, T. (2019). Toxicity studies of extract of African Mistletoe: Agelanthus Dodoneifolius Polh and Wiens in Rats. Nigerian Biomedical Science Journal, 17(1), 8-12
Chen, Y., Wang, E., Wei, Z., Zheng, Y., Yan, R., & Ma, X. (2019). Phytochemical analysis, cellular antioxidant and α-glucosidase inhibitory activities of various herb plant organs. Industrial Crops and Product, 141, 111771. https://doi.org/10.1016/j.indcrop.2019.111771
Das, K., Iyer, K. R., Orfali, R., Asdaq, S. M. B., Alotaibi, N. S., Alotaibi, F. S., Alshehri, S., Quadri, M. S. A., Almarek, A., Makhashin, N. B., Alrashed, A. A., Mohzari, Y. A., & Ghoneim, M. (2023). In silico studies and evaluation of in vitro antidiabetic activity of berberine from ethanol seed extract of Coscinium fenestratum (Gaertn.) Colebr. Journal of King Saud University - Science, 35(5), 102666. https://doi.org/10.1016/j.jksus.2023.102666
Fadogba, O. A., Ogunlakin, A. D., Ajayi, A. M., & Sonibare, M. A. (2024). Antioxidant and anti-arthritic activity of Bombax buonopozense P. Beauv. leaves. Annales Pharmaceutiques Francaises, 82(4), 673-684. https://doi.org/10.1016/j.pharma.2024.02.008
Iheagwam, F. N., Dania, O. E., Michael-Onuoha, H. C., Ogunlana, O. O., & Chinedu, S. N. (2020). Antidiabetic activities of Terminalia species in Nigeria. In M. Akram (Eds.), Alternative Medicine-Update (pp. 237-244) London, UK: IntechOpen Limited. https://doi.org/10.5772/intechopen.94474
Liu, C., Zhao, S., Zhu, C., Gao, Q., Bai, J., Si, J., & Chen, Y. (2020). Ergosterol ameliorates renal inflammatory responses in mice model of diabetic nephropathy. Biomedicine & Pharmacotherapy, 128, 110252. https://doi.org/10.1016/j.biopha.2020.110252
Malik, A., Jamil, U., Butt, T. T., Waquar, S., Gan, S. H., Shafique, H., & Jafar, T. H. (2019). In silico and in vitro studies of lupeol and iso-orientin as potential antidiabetic agents in a rat model. Drug Design, Development and Therapy, 13, 1501-1513. https://doi.org/10.2147/DDDT.S176698
Malik, A., Sharif, A., Zubair, H. M., Akhtar, B., & Mobashar, A. (2013). In Vitro, In Silico, and In Vivo Studies of Cardamine hirsuta Linn as a Potential Antidiabetic Agent in a Rat Model. ACS Omega, 8(25), 22623-22636. https://doi.org/10.1021/acsomega.3c01034
Niisato, N., & Marunaka, Y. (2023). Therapeutic potential of multifunctional myricetin for treatment of type 2 diabetes mellitus. Frontiers in Nutrition, 10, 1175660. https://doi.org/10.3389/fnut.2023.1175660
Okechukwu, P., Sharma, M., Tan, W. H., Chan, H. K., Chirara, K., Gaurav, A., & Al-Nema, M. (2020). In-vitro antidiabetic activity and in-silico studies of the binding energies of palmatine and the standard compounds with the three receptors of alpha amylase, alpha glucosidase, and DPP-IV enzyme. Pharmacia, 67(4), 363-371. https://doi.org/10.3897/pharmacia.67.e58392
Rocha, S., Sousa, A., Ribeiro, D., Correia, C. M., Silva, V. L. M., Santos, C. M. M., Silva, A. M. S., Araújo, A. N., Fernandes, E., & Freitas, M. (2019). A study towards drug discovery for the management of type 2 diabetes mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives. Food & Function, 10(9), 5510-5520. https://doi.org/10.1039/c9fo01298b
Sapra, A., & Bhandari, P. (2014). Diabetes. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
Shaikh, J. R., & Patil, M. K. (2020). Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies, 8(2), 603-608.
Tilaoui, M., Achibat, H., Lébri, M., Lagou, S., Mouse, H. A., Zazouli, S., Hafid, A., Zyad, A., & Khouili, M. (2021). Phytochemical screening, antioxidant and in vitro anticancer activities of Bombax buonopozense stem bark extracts. Biotechnology & Biotechnological Equipment, 35(1), 1662-1668. https://doi.org/10.1080/13102818.2021.1997156
Ugoeze, K. C., Aja, P. C., Nwachukwu, N., Chinko, B. C., & Egwurugwu, J. N. (2020) Assessment of the phytoconstituents and optimal applicable concentration of aqueous extract of Azadirachta indica leaves for wound healing in male Wistar rats. The Thai Journal of Pharmaceutical Sciences, 45(1), 8-15. https://doi.org/10.56808/3027-7922.2467
Wang, H., Zhang, K., Chen, X., Han, M., Lu, J., & Zhang, Y. (2022). In Vitro and In Vivo Evaluation of Antidiabetic Properties and Mechanisms of Ficus tikoua Bur. Nutrients, 14(20), 4413. https://doi.org/10.3390/nu14204413
Published
How to Cite
Issue
Section
Copyright (c) 2024 Samira A. Abdullahi, Salisu Abubakar Maiwada, Aminu Ibrahim

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.