Role of phytohormones and secondary metabolites in mitigating stressors of selected crop plants
DOI:
https://doi.org/10.25081/jpsp.2025.v11.9232Keywords:
Plant stress, Phytohormones, Secondary metabolites, Climate change, Crop stressAbstract
Crop plants are continuously threatened as climate change imposes abiotic stressors that limit crop growth and yield. Abiotic stress includes drought, high salt concentration and excessive heat. Phytohormones which act as messengers, play a central part in coordinating adaptive responses to these environmental stressors. Plants often employ phytohormones, such as cytokinins (CKs), auxins (AUX), ethylene (ET), salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), brassinosteroids (BRs) and gibberellins (GAs), in their strategic response to stress. The review of original research works in the last ten years specifically highlights the involvement of plant hormones in enabling some crop plants to withstand environmental stressors. This study explored the active roles of secondary metabolites, which are by-products of plant metabolism in conferring stress tolerance on crop plants. These secondary metabolites are flavonoids and phenolic compounds that act as antioxidants, scavenging reactive oxygen and nitrogen species thereby protecting plant cells from oxidative damage during stress. The phytohormonal signaling and secondary metabolite production enhance crop plants’ overall stress tolerance and adaptation to harsh environmental conditions. We provide a summary of studies from 2014 to 2024 reporting the ability of these phytochemicals to mitigate the effects of climate-induced stressors.
Downloads
References
Agostini-Costa, T. da S., Vieira, R. F., Bizzo, H. R., Silveira, D., & Gimenes, M. A. (2012). Secondary metabolites. In S. Dhanarasu (Ed.), Chromatography and Its Applications Brazil (pp. 131-164) London, UK: IntechOpen Limited. https://doi.org/10.5772/35705
Ahmed, S., Ahmed, S., Roy, S. K., Woo, S. H., Sonawane, K. D., & Shohael, A. M. (2019). Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agriculture, 4(1), 361-373. https://doi.org/10.1515/opag-2019-0033
Ashraf, M. A., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M., & Arif, M. S. (2018). Environmental stress and secondary metabolites in plants: An overview. In P. Ahmad, M. A. Ahanger, V. P. Singh, D. K. Tripathi, P. Alam & M. N. Alyemeni (Eds.), Plant Metabolites and Regulation Under Environmental Stress (pp. 153-167) New York, US: Academic Press. https://doi.org/10.1016/B978-0-12-812689-9.00008-X
Bittner, A., Ciesla, A., Gruden, K., Lukan, T., Mahmud, S., Teige, M., Vothknecht, U. C., & Wurzinger, B. (2022). Organelles and phytohormones: a network of interactions in plant stress responses. Journal of Experimental Botany, 73(21), 7165-7181. https://doi.org/10.1093/jxb/erac384
Chaudhary, P., Sharma, A., Singh, B., & Nagpal, A. K. (2018). Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology, 55, 2833-2849. https://doi.org/10.1007/s13197-018-3221-z
Davies, K. M., Albert, N. W., Zhou, Y., & Schwinn, K. E. (2018). Functions of flavonoid and betalain pigments in abiotic stress tolerance in plants. Annual Plant Reviews Online, 1(1), 21-62. https://doi.org/10.1002/9781119312994.apr0604
Dehnavi, A. R., Zahedi, M., Ludwiczak, A., & Piernik, A. (2022). Foliar Application of Salicylic Acid Improves Salt Tolerance of Sorghum (Sorghum bicolor (L.) Moench). Plants, 11(3), 368. https://doi.org/10.3390/plants11030368
Dehnavi, A. R., Zahedi, M., Razmjoo, J., & Eshghizadeh, H. (2019). Effect of exogenous application of salicylic acid on salt-stressed sorghum growth and nutrient contents. Journal of Plant Nutrition, 42(11-12), 1333-1349. https://doi.org/10.1080/01904167.2019.1617307
Guo, T., Gull, S., Ali, M. M., Yousef, A. F., Ercisli, S., Kalaji, H. M., Telesiński, A., Auriga, A., Wróbel, J., Radwan, N. S., & Ghareeb, R. Y. (2022). Heat stress mitigation in tomato (Solanum lycopersicum L.) through foliar application of gibberellic acid. Scientific Reports, 12, 11324. https://doi.org/10.1038/s41598-022-15590-z
Jiang, C., Li, X., Zou, J., Ren, J., Jin, C., Zhang, H., Yu, H., & Jin, H. (2022). Comparative transcriptome analysis of genes involved in the drought stress response of two peanut (Arachis hypogaea L.) varieties. BMC Plant Biology, 21, 64. https://doi.org/10.1186/s12870-020-02761-1
Jogawat, A., Yadav, B., Chhaya, Lakra, N., Singh, A. K., & Narayan, O. P. (2021). Crosstalk between Phytohormones and Secondary Metabolites in the Drought Stress Tolerance Crop Plants. Physiologia Plantarum, 172(2), 1-27. https://doi.org/10.1111/ppl.13328
Kliebenstein, D. J. (2013). Making new molecules-evolution of structures for novel metabolites in plants. Current Opinion in Plant Biology, 16(1), 112-117. https://doi.org/10.1016/j.pbi.2012.12.004
Li, Y., Liu, J., & Yang, Z. (2023). The Role of ABA in Enhancing Cold and Drought Tolerance in Tomato Seedlings. Journal of Plant Physiology, 275, 153675.
Mauch-Mani, B., & Mauch, F. (2005). The role of abscisic acid in plant–pathogen interactions. Current Opinion in Plant Biology, 8(4), 409-414. https://doi.org/10.1016/j.pbi.2005.05.015
Nawrot-Chorabik, K., Sułkowska, M., & Gumulak, N. (2022). Secondary Metabolites Produced by Trees and Fungi: Achievements So Far and Challenges Remaining. Forests, 13(8), 1338. https://doi.org/10.3390/f13081338
Nazem, V., Sabzalian, M. R., Saeidi, G., & Rahimmalek, M. (2019). Essential oil yield and composition and secondary metabolites in self-and open-pollinated populations of mint (Mentha spp.). Industrial Crops and Products, 130, 332-340. https://doi.org/10.1016/j.indcrop.2018.12.018
Peleg, Z., & Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current Opinions in Plant Biology, 14(3), 290-295. https://doi.org/10.1016/j.pbi.2011.02.001
Ren, G., Yang, P., Cui, J., Gao, Y., Yin, C., Bai, Y., Zhao, D., & Chang, J. (2022). Multiomics Analyses of Two Sorghum Cultivars Reveal the Molecular Mechanism of Salt Tolerance. Frontiers in Plant Science, 13, 886805. https://doi.org/10.3389/fpls.2022.886805
Suliman, A. A., Elkhawaga, F. A., Zargar, M., Bayat, M., Pakina, E., & Abdelkader, M. (2024). Boosting Resilience and Efficiency of Tomato Fields to Heat Stress Tolerance Using Cytokinin (6-Benzylaminopurine). Horticulturae, 10(2), 170. https://doi.org/10.3390/horticulturae10020170
Talbia, S., Rojas, J. A., Sahrawy, M., Rodríguez-Serrano, M., Cárdenas, K. E., Debouba, M., & Sandalio, L. M. (2020). Effect of drought on growth, photosynthesis and total antioxidant capacity of the saharan plant Oudeneya Africana. Environmental and Experimental Botany, 176, 104099. https://doi.org/10.1016/j.envexpbot.2020.104099
Treml, J., & Smejkal, K. (2016). Flavonoids as potent scavengers of hydroxyl radicals. Comprehensive Reviews in Food Science and Food Safety, 15(4), 720-738. https://doi.org/10.1111/1541-4337.12204
Ullah, A., Manghwar, H., Shaban, M., Khan, A. H., Akbar, A., Ali, U., Ali, E., & Fahad, S. (2018). Phytohormones enhance drought tolerance in plants: A coping strategy. Environmental Science and Pollution Research, 25, 33103-33118. https://doi.org/10.1007/s11356-018-3364-5
Verma, N., & Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 105-113. https://doi.org/10.1016/j.jarmap.2015.09.002
Vu, N.-T., Kang, H.-M., Kim, Y.-S., Choi, K.-Y., & Kim, I.-S. (2015). Growth, physiology, and abiotic stress response to abscisic acid in tomato seedlings. Horticulture, Environment, and Biotechnology, 56, 294-304. https://doi.org/10.1007/s13580-015-0106-1
Wang, J., Song, L., Gong, X., Xu, J., & Li, M. (2020). Functions of jasmonic acid in plant regulation and response to abiotic stress. International Journal of Molecular Sciences, 21(4), 1446. https://doi.org/10.3390/ijms21041446
Wang, K., Shen, Y., Wang, H., He, S., Kim, W. S., Shang, W., Wang, Z., & Shi, L. (2022). Effects of exogenous salicylic acid (SA), 6- benzylaminopurine (6-BA), or abscisic acid (ABA) on the physiology of Rosa hybrida ‘Carolla’under high-temperature stress. Horticulturae, 8(9), 851. https://doi.org/10.3390/horticulturae8090851
Wang, X., Gao, Y., Wang, Q., Chen, M., Ye, X., Li, D., Chen, X., Li, L., & Gao, D. (2019). 24-Epibrassinolide-alleviated drought stress damage influences antioxidant enzymes and autophagy changes in peach (Prunus persicae L.) leaves. Plant Physiology and Biochemistry, 135, 30-40. https://doi.org/10.1016/j.plaphy.2018.11.026
Yang, X., Zhao, X., Fu, D., & Zhao, Y. (2022). Integrated Analysis of Widely Targeted Metabolomics and Transcriptomics Reveals the Effects of Transcription Factor NOR-like1 on Alkaloids, Phenolic Acids, and Flavonoids in Tomato at Different Ripening Stages. Metabolites, 12(12), 1296. https://doi.org/10.3390/metabo12121296
Zhang, H., Duan, W., Xie, B., Wang, B., Hou, F., Li, A., Dong, S., Qin, Z., Wang, Q., & Zhang, L. (2020). Root yield, antioxidant capacities, and hormone contents in different drought-tolerant sweet potato cultivars treated with ABA under early drought stress. Acta Physiologiae Plantarum, 42,132. https://doi.org/10.1007/s11738-020-03116-x
Zhang, H., Liu, D., Yang, B., Liu, W.-Z., Mu, B., Song, H., Chen, B., Li,Y., Ren, D., Deng, H., & Jiang,Y. Q. (2020). Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABA-responsive element-binding factors. Journal of Experimental Botany, 71(1), 188-203. https://doi.org/10.1093/jxb/erz432
Published
How to Cite
Issue
Section
Copyright (c) 2025 Journal of Plant Stress Physiology

This work is licensed under a Creative Commons Attribution 4.0 International License.