Biochar soil application induces stress tolerance in Arachis hypogaea L. Varieties inoculated with stem rot fungus (Athelia rolfsii (Sacc.) C.C. Tu & Kim.)

Authors

  • O. G. Okon Department of Botany, Akwa Ibom State University, Nigeria
  • Y. I. Uwaidem Department of Botany, Akwa Ibom State University, Nigeria
  • U. E. Antia Department of Microbiology, Akwa Ibom State University, Nigeria
  • B. F. Archibong Department of Botany, Akwa Ibom State University, Nigeria
  • J. E. Okon Department of Microbiology, Akwa Ibom State University, Nigeria

DOI:

https://doi.org/10.25081/jpsp.2025.v11.9136

Keywords:

Athelia rolfsii, Arachis hypogaea, Biochar, Biotic stress, Stem Rot Fungus, Stress

Abstract

This study aims to investigate the extent to which soil amendment with biochar can promote growth and induce biotic stress tolerance in Arachis hypogaea accessions (TAH-183, TAH-142, TAH-164, TAH-124 and TAH-134) inoculated with stem rot fungus (Athelia rolfsii). The experiment was set up in a complete block design. 5 seeds of A. hypogaea accessions were planted in 10 kg of sterilized soil in triplicates (control(C), A. rolfsii alone (T) and A. rolfsii+Biochar (A+T). Characterized pathogen A. rolfsii causing vine rot and wilt disease was obtained from Botany pathology laboratory and spawned with 300 g of millet seeds. 5 g of A. rolfsii colonized seeds were used to infect A. hypogaea accessions seedlings. Growth parameters and disease severity index (DSI) were taken using standard methods, while the total photosynthetic pigments (TPP) were determined using the atLeaf chlorophyll meter. All A. hypogaea accessions showed 100% germination across all treatments after 11 days except TAH-183 (80%) and TAH-134 (60%). TAH-142 and TAH-183 accessions inoculated with A. rolfsii were the most susceptible with disease severity index of 50% and 33.30% respectively. However, biochar application treatments recorded 0% DSI for all accessions. At 6 weeks after planting (WAP), it was observed that inoculation of A. hypogaea accessions with A. rolfsii significantly (p<0.001) reduced the growth parameters such as shoot length for TAH-142 and TAH-124 which recorded the lowest values; T=3.40±181 cm, C=15.50±1.45 cm, A+T=20.00±1.70 cm; and T=8.33±2.33 cm, C=15.20±1.20 cm, A+B=21.12±1.90 cm while TAH-183 and TAH-164 had the highest shoot growth (T=19.33±1.36 cm, C=20.00±1.54 cm, A+T=24.77±1.67 cm; T=16.83±1.76 cm, 17.00±1.13 cm, A+T=28.30±2.00 cm) when compared to their controls and biochar treatments. TAH-142 (T=30.00 mg/kg, C=37.90 mg/kg, A+B=40.00 mg/kg) recorded the least TPP contents, while TGM-183 (T=36.00 mg/kg, C=40.10 mg/kg, A+T=44.50 mg/kg) recorded the highest TPP. For postharvest parameters; TAH-142 (5.77±0.09 g) had the lowest fresh biomass yield while TAH-164 (58.70±1.56 g) had a better tolerance to A. rolfsii infection. However, TAH-183 showed greater fresh biomass yield when biochar was applied (89.67±4.53 g) while TAH-142 recorded the lowest (78.90±2.21 g). Amelioration of soil with biochar significantly (p=0.001) stimulated growth above the treatment and control. Similar trend was observed for leaf area, petiole length, leaf number, stem girth and internode length. This study has shown that A. rolfsii infection had a negative effect on the growth and biomass yield of A. hypogaea and soil amended with biochar conferred disease tolerance in all A. hypogaea accessions thus eliminating the need for the use of fungicides and additional fertilizer application.

Downloads

Download data is not yet available.

References

Acabal Jr, B. D., Dalisay T. U., Groenewald J. Z., Crous P. W., & Cumagun C. J. R. (2019). Athelia rolfsii (= Sclerotium rolfsii) infects banana in the Philippines. Australasian Plant Disease Notes, 14, 10. https://doi.org/10.1007/s13314-019-0341-x

Ajeigbe, H. A., Waliyar, F., Echekwu, C. A., Ayuba, K., Motagi, B. N., Eniayeju, D., & Inuwa, A. (2015). A farmer's guide to groundnut production in Nigeria. Telangana, India: International Crops Research Institute for the Semi-Arid Tropics.

Ambika, S., Sreedevi, S., Chavan, Jayalakshmi, S. K., Raghavendra, B. T., & Rajanna, B. (2023). Status of Stem Rot Incidence of Groundnut Caused by Sclerotium rolfsii in Northern Eastern Karnataka. Journal of Oilseeds Research, 40(Special issue).

Borisade, O. A., & Uwaidem, Y. I. (2018). Priming F1-Resistant Tomato Hybrid (Lindo-F1) Seedlings with Copper-I-Oxide Metalaxyl Composite Fungicide before Infection Enhanced Resistance to Fusarium Wilt. International Journal of Pathogen Research, 1(3), 1-13. https://doi.org/10.9734/ijpr/2018/v1i329615

Bosamia, T. C., Dodia, S. M., Mishra, G. P., Ahmad, S., Joshi, B., Thirumalaisamy, P. P., Kumar, N., Rathnakumar, A. L., Sangh, C., Kumar, A., & Thankappan, R. (2020). Unraveling the mechanisms of resistance to Sclerotium rolfsii in peanut (Arachis hypogaea L.) using comparative RNA-Seq analysis of resistant and susceptible genotypes. PLoS One, 15(8), e0236823. https://doi.org/10.1371/journal.pone.0236823

Cavalcanti, V. P., Araújo, N. A. F., Schwanestrada, K. R. F., Pasqual, M., & Dória, J. (2018). Athelia (Sclerotium) rolfsii in Allium sativum: potential biocontrol agents and their effects on plant metabolites. Anais da Academia Brasileira de Ciências, 90(4), 3949-3962.

Edmunds, B. A., Gleason, M. L., & Wegulo, S. N. (2003). Resistance of hosta cultivars to petiole rot caused by Sclerotium rolfsii var. delphinii. HortTechnology, 13(2), 302-305.

Eo, J., Park, K.-C., Kim, M.-H., Kwon, S.-I., & Song, Y.-J. (2018). Effects of rice husk and rice husk biochar on root rot disease of ginseng (Panax ginseng) and on soil organisms. Biological Agriculture & Horticulture, 34(1), 27-39. https://doi.org/10.1080/01448765.2017.1363660

Essilfie, M. E., Dapaah, K. H., Essilfie, K. J., Asmah, F. B., & Donkor, F. (2020). Growth and yield response of two groundnut cultivars to row pattern in the forest-Savannah Transition Zone of Ghana. Journal of Cereals and Oilseeds, 11(1), 7-15. https://doi.org/10.5897/JCO2019.0203

FAO. (2019). Food and Agricultural Organization of the United Nation. FAO Statistical Database. Retrieved from http://faostat.fao.org

Garcia-Gonzalez, J., Mehl, H. L., Langston, D. B., & Rideout, S. L. (2022). Planting date and cultivar selection to manage southern blight in potatoes in the mid-Atlantic United States. Crop Protection, 162, 106077. https://doi.org/10.1016/j.cropro.2022.106077

Garren, K. H. (1958). The stem rot of peanuts and its control. Blacksburg, Virginia: Virginia Agricultural Experiment Station.

Garren, K. H., & Bailey, W. K. (1963). Comparative responses of a Virginia runner and a

Virginia Bunch peanut to cultural control of stem rot. Agronomy Journal, 55(3), 290-293. https://doi.org/10.2134/agronj1963.00021962005500030026x

Garren, K. H., & Duke, G. B. (1958). The effects of deep covering of organic matter and nondirting weed control on peanut stem rot. Plant Disease Report, 42, 629-636.

Hagan, A. K., Campbell, H. L., Bowen, K. L., & Wells, L. (2015). Seeding rate and planting date impacts stand density, diseases, and yield of irrigated peanuts. Plant Health Progress, 16(2), 63-70. https://doi.org/10.1094/PHP-RS-14-0019

Hua, L., Chen, Y., & Wu, W. (2012). Impacts upon soil quality and plants growth of bamboo charcoal addition to composted sludge. Environmental Technology, 33(1), 61-68. https://doi.org/10.1080/09593330.2010.549845

Iacomino, G., Idbella, M., Laudonia, S., Vinale, F., & Bonanomi, G. (2022). The Suppressive Effects of Biochar on Above and Below ground Plant Pathogens and Pests: A Review. Plants, 11, 3144. https://doi.org/10.3390/plants11223144

Ibrahim, A. M., Sanusi, J., & Usman, A. (2021). Growth and yield of groundnut (Arachis hypogaea L.) as affected by intra-row spacing and irrigation interval in Sudan Savannah Zone of Nigeria. International Journal of Agricultural Policy and Research, 9(6), 153-159. https://doi.org/10.15739/IJAPR.21.017

Ismaila, U. Y., Okon, O. G., Lovina, U., & Oluwaseun, A. (2024). Incidence and Severity of Vine Rot and Wilt Disease of Telfairia occidentalis Caused by Athelia rolfii in Southern, Nigeria. Asian Plant Research Journal, 12(1), 22-31. https://doi.org/10.9734/aprj/2024/v12i1240

Jaiswal, A. K., Elad, Y., Graber, E. R., & Frenkel, O. (2014). Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biology and Biochemistry, 69, 110-118. https://doi.org/10.1016/j.soilbio.2013.10.051

Jaiswal, A. K., Frenkel, O., Elad, Y., Lew, B., & Graber, E. R. (2015). Non-monotonic influence of biochar dose on bean seedling growth and susceptibility to Rhizoctonia solani: The “Shifted Rmax-Effect”. Plant and Soil, 395, 125-140. https://doi.org/10.1007/s11104-014-2331-2

Karthikeyan, V., Sankaralingam, A., & Nakkeeran, S. (2006). Management of groundnut root rot with biocontrol agents and organic amendments. Archives of Phytopathology and Plant Protection, 39(3), 215-223. https://doi.org/10.1080/03235400500094225

Keinath, A. P., & DuBose, V. B. (2017). Management of southern blight on tomato with SDHI

fungicides. Crop Protection, 101, 29-34. https://doi.org/10.1016/j.cropro.2017.07.013

Konlan, S., Sarkodier-Addo, J., Asare, E., & Kombiok, M. J. (2013). Groundnut (Arachis hypogaea L.) varietal response to spacing in the Guinea Savannah agro-ecological zone of Ghana: Growth and Yield. African Journal of Agricultural Research, 8(22), 2769-2777.

Lévesque, V., Jeanne, T., Dorais, M., Ziadi, N., Hogue, R., & Antoun, H. (2020). Biochars improve tomato and sweet pepper performance and shift bacterial composition in a peat-based growing medium. Applied Soil Ecology, 153, 103579. https://doi.org/10.1016/j.apsoil.2020.103579

Liamngee, K., Akomaye, M. U., & Okoro, J. K. (2015). Efficacy of some Botanicals in the Control of Fungi causing Post-harvest rot of yam in Katube Market, Obudu, Nigeria. IOSR Journal of Pharmacy and Biological Sciences, 10(6), 33-34.

Lo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., Zuccaro, A., Reissmann, S., & Kahmann, R. (2015). Fungal effectors and plant susceptibility. Annual Review of Plant Biology, 66, 513-545. https://doi.org/10.1146/annurev-arplant-043014-114623

Mohawesh, O., Albalasmeh, A., Gharaibeh, M., Deb, S., Simpson, C., Singh, S., Al-Soub, B., & El Hanandeh, A. (2021). Potential use of biochar as an amendment to improve soil fertility and tomato and bell pepper growth performance under arid conditions. Journal of Soil Science and Plant Nutrition, 21, 2946-2956. https://doi.org/10.1007/s42729-021-00580-3

Mullen, J. (2001). Southern blight, southern stem blight, white mold. The Plant Health Instructor, 10, PHI-I-2001-0104-01. https://doi.org/10.1094/PHI-I-2001-0104-01

Onat, B., Bakal, H., Gulluoglu, L., & Arioglu, H. (2017). The effect of row spacing and plant density on yield and yield components of peanut grown as a double crop in Mediterranean environment in Turkey. Turkish Journal of Field Crops, 22(1), 71-80.

Pethybridge, S. J., Sharma, S., Silva, A., Bowden, C., Murphy, S., Knight, N. L., & Hay, F. S. (2019). Southern sclerotium root rot caused by Athelia rolfsii on table beet in New York. Plant Health Progress, 20(1), 4-6. https://doi.org/10.1094/PHP-07-18-0037-BR

Poveda, J., Abril-Urias, P., & Escobar, C. (2020). Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontiers in Microbiology, 11, 992. https://doi.org/10.3389/fmicb.2020.00992

Poveda, J., Martínez-Gómez, Á., Fenoll, C., & Escobar, C. (2021). The use of biochar for plant pathogen control. Phytopathology, 111(9), 1490-1499. https://doi.org/10.1094/PHYTO-06-20-0248-RVW

Purohit, A., Ghosh, S., Chaudhuri, R. K., & Chakraborti, D. (2023). Biological control of Fusarium wilt in legumes. In M. Ghorbanpour & M. A. Shahid (Eds.), Plant Stress Mitigators (pp. 435-454). Cambridge, US: Academic Press. https://doi.org/10.1016/B978-0-323-89871-3.00019-7

Subrahmanyam, P., Greenberg, D. C., Savary, S., & Bosctf J. P. (1991). Diseases of groundnut in West Africa and their management: rese arch priorities and strategies. Tropical Pest Management, 37(3), 259-269. https://doi.org/10.1080/09670879109371596

Termorshuizen, A. J. (2007). Fungal and Fungus-Like Pathogens of Potato. In D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, M. A. Taylor, D. K. L. MacKerron & H. A. Ross (Eds.), Potato Biology and Biotechnology (pp. 643-665) Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-044451018-1/50071-3

Upadhyay, K. P., George, D., Swift, R. S., & Galea, V. (2014). The influence of biochar on growth of lettuce and potato. Journal of Integrative Agriculture, 13(3), 541-546. https://doi.org/10.1016/S2095-3119(13)60710-8

Vabi, B. M., Mohammed, S. G., Echekwu, C. A., Mukhtar, A. A., Ahmed, B., Ajeigbe, H. A., & Eche, C. O. (2019). Best choices for enhancing groundnut productivity in Nigeria. Patencheru, India: ICRISAT.

Verwaaijen, B., Wibberg, D., Kröber, M., Winkler, A., Zrenner, R., Bednarz, H., Niehaus, K., Grosch, R., Pühler, A., & Schlüter, A. (2017). The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.). PLoS One, 12(5), e0177278. https://doi.org/10.1371/journal.pone.0177278

Zwart, D. C., & Kim, S.-H. (2012). Biochar amendment increases resistance to stem lesions caused by Phytophthora spp. in tree seedlings. HortScience, 47(12), 1736-1740. https://doi.org/10.21273/HORTSCI.47.12.1736

Published

23-04-2025

How to Cite

Okon, O. G., Y. I. Uwaidem, U. E. Antia, B. F. Archibong, and J. E. Okon. “Biochar Soil Application Induces Stress Tolerance in Arachis Hypogaea L. Varieties Inoculated With Stem Rot Fungus (Athelia Rolfsii (Sacc.) C.C. Tu & Kim.)”. Journal of Plant Stress Physiology, vol. 11, Apr. 2025, pp. 5-11, doi:10.25081/jpsp.2025.v11.9136.

Issue

Section

Articles