Elevated osmolytes accumulation helps in combating NaCl stress causing negative impacts on growth and metabolism of Vigna radiata (L.)
DOI:
https://doi.org/10.25081/jpsp.2024.v10.8791Keywords:
Compatible solutes, Mung bean, Growth, NaCl toxicity, Salinity stress, PigmentsAbstract
Salinity stress is one of the main abiotic stresses that have a negative impact on the growth performance of green gram. The current study was carried out as a result to find out growth, and morpho-biochemical changes in Vigna radiata CO7 variety cultivated under NaCl stress treatments. The V. radiata CO7 variety was selected and the experiment was carried out in pot culture under varying NaCl concentrations viz., 0, 50, 75, 100, and 125 mM respectively to assess maximum tolerance range of the CO7 variety. The salt stress was given on 15th days after sowing and sampling was done after 10 days of treatment on the 25th, 35th, and 45th day respectively. Salt stress results in a steep decline in shoot length, biomass, chlorophyll contents a and b, and soluble protein contents with increased NaCl treatments on all sampling days. However, carotenoid contents, and compatible solutes including proline, Glycine-betaine, Amino acids and total soluble sugars contents were found to be upregulated under varying NaCl concentrations in V. radiata CO7 variety on all sampling days. Thus, increased carotenoid contents, and osmolytes, provide stress tolerance to V. radiata CO7 variety by maintaining the turgor pressure of cells and preventing further water loss under varying NaCl concentrations. Hence, this variety shows maximum surveillance at 75 mM and beyond this plant performance is restricted and further study is needed to access CO7 variety for a breeding program to enhance salt stress tolerance.
Downloads
References
Akram, N. A., Hafeez, N., Farid-ul-Haq, M., Ahmad, A., Sadiq, M., & Ashraf, M. (2020). Foliage application and seed priming with nitric oxide causes mitigation of salinity-induced metabolic adversaries in broccoli (Brassica oleracea L.) plants. Acta Physiologiae Plantarum, 42, 155. https://doi.org/10.1007/s11738-020-03140-x
Alharby, H. F., Al-Zahrani, H. S., Hakeem, K. R., & Iqbal, M. (2019). Identification of physiological and biochemical markers for salt (NaCl) stress in the seedlings of mungbean [Vigna radiata (L.) Wilczek] genotypes. Saudi Journal of Biological Sciences, 26(5),1053-1060. https://doi.org/10.1016/j.sjbs.2018.08.006
Alzahrani, S., & Alaraidh, I. A. (2019). Physiological, biochemical, and antioxidant properties of two genotypes of Vicia faba grown under salinity stress. Pakistan Journal of Botany, 51(3),786-798.
Amini, F., & Ehsanpour, A. A. (2005). Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. American Journal of Biochemistry and Biotechnology, 1(4), 204-208. https://doi.org/10.3844/ajbbsp.2005.204.208
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 24(1), 1.
Aryendu, Mir, R. A., Kathiravan, M., & Somasundaram, R. (2022a). Alleviating NaCl Stress by Improving Growth and Yield in Arachis hypogaea L. by Exogenous Application of Brassinolide and Paclobutrazol. Indian Journal of Natural Sciences, 13(73), 46608-46619.
Aryendu, Mir, R. A., Kathiravan, M., & Somasundaram, R. (2022b). Role of Osmolytes in Alleviation of NaCl Stress in Arachis hypogaea L. by Exogenous Application of Brassinolide and Paclobutrazol. Indian Journal of Natural Sciences, 13(75), 50424-50433.
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Bulgari, R., Trivellini, A., & Ferrante, A. (2019). Effects of two doses of organic extract-based biostimulant on greenhouse lettuce grown under increasing NaCl concentrations. Frontiers in Plant Science, 9, 1870. https://doi.org/10.3389/fpls.2018.01870
Ceccarini, C., Antognoni, F., Biondi, S., Fraternale, A., Verardo, G., Gorassini, A., & Scoccianti, V. (2019). Polyphenol-enriched spelt husk extracts improve growth and stress-related biochemical parameters under moderate salt stress in maize plants. Plant physiology and Biochemistry, 141, 95-104. https://doi.org/10.1016/j.plaphy.2019.05.016
Chaparzadeh, N., Khavari-Nejad, R. A., Navari-Izzo, F., & Izzo, R. (2003). Water relations and ionic balance in Calendula officinalis L. under salinity conditions. Agrochimica, 47(1), 69-79.
Chen, Z., Cao, X., & Niu, J. (2021). Effects of exogenous ascorbic acid on seed germination and seedling salt-tolerance of alfalfa. PLoS One, 16(4), e0250926. https://doi.org/10.1371/journal.pone.0250926
Chiconato, D. A., Junior, G. da S. S., dos Santos, D. M. M., & Munns, R. (2019). Adaptation of sugarcane plants to saline soil. Environmental and Experimental Botany, 162, 201-211. https://doi.org/10.1016/j.envexpbot.2019.02.021
Cokkizgin, A. (2012). Salinity stress in common bean (Phaseolus vulgaris L.) seed germination. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1),177-182
Crowe, J. H., Crowe, L. M., Carpenter, J. F., Rudolph, A. S., Wistrom, C. A., Spargo, B. J., & Anchordoguy, T. J. (1988). Interactions of sugars with membranes. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 947(2), 367-384. https://doi.org/10.1016/0304-4157(88)90015-9
Das, S. K., Patra, J. K., & Thatoi, H. (2016). Antioxidative response to abiotic and biotic stresses in mangrove plants: A review. International Review of Hydrobiology, 101(1-2), 3-19. https://doi.org/10.1002/iroh.201401744
El-Beltagi, H. S., Mohamed, H. I., & Sofy, M. R. (2020). Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules, 25(7),1702. https://doi.org/10.3390/molecules25071702
Farhangi-Abriz, S., & Torabian, S. (2017). Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety, 137, 64-70. https://doi.org/10.1016/j.ecoenv.2016.11.029
Farooq, M., Hussain, M., Wakeel, A., & Siddique, K. H. M. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35, 461-481. https://doi.org/10.1007/s13593-015-0287-0
Giuffrida, F., Giurato, R., Leonardi, C. (2012). Effects of NaCl salinity on yield, quality and mineral composition of broccoli and cauliflower. Acta Horticulturae, 1005, 531-538.
Gomes, M. A. da C., Pestana, I. A., Santa-Catarina, C., Hauser-Davis, R. A., & Suzuki, M. S. (2017). Salinity effects on photosynthetic pigments, proline, biomass and nitric oxide in Salvinia auriculata Aubl. Acta Limnologica Brasiliensia, 29. https://doi.org/10.1590/s2179-975x4716
Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70, 303-307.
Hussain, S. J., Khan, N. A., Anjum, N. A., Masood, A., & Khan, M. I. R. (2021), Mechanistic elucidation of salicylic acid and sulphur-induced defence systems, nitrogen metabolism, photosynthetic, and growth potential of mungbean (Vigna radiata) under salt stress. Journal of Plant Growth Regulation, 40, 1000-1016. https://doi.org/10.1007/s00344-020-10159-4
Jangir, R. P., & Yadav, B. S. (2011). Management of saline irrigation water for enhancing crop productivity. Journal of Scientific and Industrial Research, 70(8), 622-627.
Kamran, M., Xie, K., Sun, J., Wang, D., Shi, C., Lu, Y., Gu, W., & Xu, P. (2020). Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.). Ecotoxicology and Environmental Safety, 188, 109877. https://doi.org/10.1016/j.ecoenv.2019.109877
Kaya, C., Tuna, A. L., & Okant, A. M. (2010). Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turkish Journal of Agriculture and Forestry, 34(6), 529-538. https://doi.org/10.3906/tar-0906-173
Khosravinejad, F., Heydari, R., & Farboodnia, T. (2009). Effect of salinity on organic solutes contents in barley. Pakistan Journal of Biological Sciences, 12(2),158-162. https://doi.org/10.3923/pjbs.2009.158.162
Kirk, J. T. O., & Allen, R. L. (1965). Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochemical and Biophysical Research Communications, 21(6), 523-530. https://doi.org/10.1016/0006-291X(65)90516-4
Kumar, S., Li, G., Yang, J., Huang, X., Ji, Q., Liu, Z., Ke, W., & Hou, H. (2021). Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Frontiers in Plant Science, 12, 660409. https://doi.org/10.3389/fpls.2021.660409
Liu, C., Zhao, X., Yan, J., Yuan, Z., & Gu, M. (2019). Effects of salt stress on growth, photosynthesis, and mineral nutrients of 18 pomegranate (Punica granatum) cultivars. Agronomy, 10(1), 27. https://doi.org/10.3390/agronomy10010027
Mansour, M. M. F., & Ali, E. F. (2017). Glycinebetaine in saline conditions: an assessment of the current state of knowledge. Acta Physiologiae Plantarum, 39, 56. https://doi.org/10.1007/s11738-017-2357-1
Mansour, M. M. F., Salama, K. H. A., Ali, F. Z. M., & Hadid, A. F. A. (2005). Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. General and Applied Plant Physiology, 31(1-2), 29-41.
Mervat, S. S., & Ebtihal, M. A. E. (2013). Physiological response of flax cultivars to the effect of salinity and salicylic acid. Journal of Applied Sciences Research, 9(6), 3573-3581.
Mir, R. A., & Somasundaram, R. (2020). Effect of NaCl stress on pigment composition, membrane integrity and proline metabolism of little millet (Panicum sumatrense L.) CO-4 variety. International Journal of Botany Studies, 5(3), 586-593.
Mir, R. A., & Somasundaram, R. (2021a). Growth improvement and pigment composition in cowpea (Vigna unguiculata (L.) Walp.) by foliar spray of salicylic acid and ascorbic acid under NaCl stress. International Journal of Botany Studies, 6(2), 490-496.
Mir, R. A., & Somasundaram, R. (2021b). Foliar Applied Salicylic Acid and Ascorbic Acid Induced Physiological Changes Enhancing Salt Stress Tolerance and thereby Harvest Attributes in Cowpea Grown under NaCl Stress. Indian Journal of Natural Sciences, 12(69), 36801-36808.
Moore, S., & Stein, W. H. (1948). Photometric nin-hydrin method for use in the ehromatography of amino acids. Journal of Biological Chemistry, 176(1), 367-388. https://doi.org/10.1016/S0021-9258(18)51034-6
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Murakeözy, É. P., Nagy, Z., Duhazé, C., Bouchereau, A., & Tuba, Z. (2003). Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. Journal of Plant Physiology, 160(4), 395-401. https://doi.org/10.1078/0176-1617-00790
Naeem, M. S., Jin, Z. L., Wan, G. L., Liu, D., Liu, H. B., Yoneyama, K., & Zhou, W. J. (2010). 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). Plant and Soil, 332, 405-415. https://doi.org/10.1007/s11104-010-0306-5
Nahar, K., Hasanuzzaman, M., & Fujita, M. (2016). Roles of osmolytes in plant adaptation to drought and salinity. In N. Iqbal, R. Nazar & N. A. Khan (Eds.), Osmolytes and plants acclimation to changing environment: Emerging Omics Technologies (pp. 37-68) New Delhi, India: Springer. https://doi.org/10.1007/978-81-322-2616-1_4
Naheed, R., Aslam, H., Kanwal, H., Farhat, F., Gamar, M. I. A., Al-Mushhin, A. A. M., Jabborova, D., Ansari, M. J., Shaheen, S., Aqeel, M., Noman, A., & Hessini, K. (2021). Growth attributes, biochemical modulations, antioxidant enzymatic metabolism and yield in Brassica napus varieties for salinity tolerance. Saudi Journal of Biological Sciences, 28(10), 5469-5479. https://doi.org/10.1016/j.sjbs.2021.08.021
Negrão, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1-11. https://doi.org/10.1093/aob/mcw191
Nelson, N. (1944). A photometric adaptation of the Somogyis method for the determination of glucose. Analytical Chemistry, 31, 426-428.
Noreen, S., Sultan, M., Akhter, M. S., Shah, K. H., Ummara, U., Manzoor, H., Ulfat, M., Alyemeni, M. N., & Ahmad, P. (2021). Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. Plant Physiology and Biochemistry, 158, 244-254. https://doi.org/10.1016/j.plaphy.2020.11.007
Qados, A. M. S. A. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, 10(1), 7-15. https://doi.org/10.1016/j.jssas.2010.06.002
Rady, M. M., Sadak, M. S., El-Bassiouny, H. M. S., & El-Monem, A. A. A. (2011). Alleviation the adverse effects of salinity stress in sunflower cultivars using nicotinamide and α-tocopherol. Australian Journal of Basic and Applied Sciences, 5(10), 342-355.
Ramel, F., Birtic, S., Ginies, C., Soubigou-Taconnat, L., Triantaphylidès, C., & Havaux, M. (2012). Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proceedings of the National Academy of Sciences, 109(14), 5535-5540. https://doi.org/10.1073/pnas.1115982109
Rodrıguez, P., Torrecillas, A., Morales, M. A., Ortuno, M. F., & Sánchez-Blanco, M. J. (2005). Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environmental and Experimental Botany, 53(2), 113-123. https://doi.org/10.1016/j.envexpbot.2004.03.005
Sardar, H., Ramzan, M. A., Naz, S., Ali, S., Ejaz, S., Ahmad, R., & Altaf, M. A. (2023). Exogenous Application of Melatonin Improves the Growth and Productivity of Two Broccoli (Brassica oleracea L.) Cultivars Under Salt Stress. Journal of Plant Growth Regulation, 42, 5152-5166. https://doi.org/10.1007/s00344-023-10946-9
Sehrawat, N., Yadav, M., Bhat, K. V., Sairam, R. K., & Jaiwal, P. K. (2015). Effect of salinity stress on mungbean [Vigna radiata (L.) Wilczek] during consecutive summer and spring seasons. Journal of Agricultural Sciences, 60(1), 23-32. https://doi.org/10.2298/JAS1501023S
Sofy, M. R., Elhawat, N., & Alshaal, T. (2020). Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicology and Environmental Safety, 200,110732. https://doi.org/10.1016/j.ecoenv.2020.110732
Tani, E., Chronopoulou, E. G., Labrou, N. E., Sarri, E., Goufa, Μ., Vaharidi, X., Tornesaki, A., Psychogiou, M., Bebeli, P. J., & Abraham, Ε.M. (2019). Growth, physiological, biochemical, and transcriptional responses to drought stress in seedlings of Medicago sativa L., Medicago arborea L. and their hybrid (Alborea). Agronomy, 9(1), 38. https://doi.org/10.3390/agronomy9010038
Tuteja, N., Gill, S. S., Tiburcio, A. F., & Tuteja, R. (2012). Improving crop resistance to abiotic stress. Weinheim, Germany: Wiley.
Valentine, A. J., Kleinert, A., & Benedito, V. A. (2017). Adaptive strategies for nitrogen metabolism in phosphate deficient legume nodules. Plant Science, 256, 46-52. https://doi.org/10.1016/j.plantsci.2016.12.010
Wang, X. S., & Han, J. G. (2007). Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Science and Plant Nutrition, 53(3), 278-285. https://doi.org/10.1111/j.1747-0765.2007.00135.x
Yadav, T., Kumar, A., Yadav, R., Yadav, G., Kumar, R., & Kushwaha, M. (2020). Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat. Saudi Journal of Biological Sciences, 27(8), 2010-2017. https://doi.org/10.1016/j.sjbs.2020.06.030
Yoshida, S., Forno, D. A., Cock, J. H., & Gomez, K. A. (1972). Laboratory manual for physiological studies of rice. International Rice Research Institute, Phillipines.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Journal of Plant Stress Physiology

This work is licensed under a Creative Commons Attribution 4.0 International License.