An An overview on Azelaic Acid: Biosynthesis, signalling and the action under stress conditions in plants

Authors

  • Burcu Seckin Dinler Department of Biology, Faculty of Science, Sinop University, Sinop, Turkey
  • Hatice Cetinkaya Department of Biology, Faculty of Science, Sinop University, Sinop, Turkey

DOI:

https://doi.org/10.25081/jpsp.2024.v10.8725

Keywords:

Dicarboxylic acid, Oleic acid, Systemic acquired resistance, Oxidative stress

Abstract

Plants are exposed to various biotic and abiotic stress factors throughout their lives. For this reason, they have developed some defense mechanisms. They can induce systemic acquired resistance (SAR), which provides long-lasting protection against diverse pathogen attacks. In recent years, several chemical inducers (salicylic acid, glyceraldehyde-3-phosphate, azelaic acid, pipecolic acid, and dehydroabietic acid) have been determined to play roles in this mechanism. The transfer of these signal molecules from infected tissue to non-infected tissues through phloem provides potent defence communication. Azelaic acid is a well-known molecule that triggers salicylic acid accumulation under biotic stress as a priming factor to induce SAR, although little is known about its role under abiotic stress. Here, this review aims to call attention to the effects of AzA under abiotic stress conditions as well as biosynthesis, transport and signalling.

Downloads

Download data is not yet available.

References

Ackman, R. G., Retson, M. E., Gallay, L. R., & Vandenheuvel, F. A. (1961). Ozonolysis of unsaturated fatty acids: I. Ozonolysis of oleic acid. Canadian Journal of Chemistry, 39(10), 1956-1963. https://doi.org/10.1139/v61-262

Atkinson, N. J., Lilley, C. J., & Urwin, P. E. (2013). Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiology, 162(4), 2028-2041. https://doi.org/10.1104/pp.113.222372

Bai, J., Jang, M., Pereira, R. F., Zhang, Y., Xu, H., Park, Y., & Kim, K. H. (2020). Azelaic Acid Promotes Fatty Acid Desaturation in Caenorhabditis elegans at Cold Temperature, Thereby Enhancing Longevity. Current Developments in Nutrition, 4(S2), 6. https://doi.org/10.1093/cdn/nzaa040_006

Brenna, E., Colombo. D., Di Lecce, G., Gatti, F. G., Ghezzi, M. C., Tentori, F., Tessaro, D., & Viola, M. (2020). Conversion of oleic acid into azelaic and pelargonic acid by a chemo-enzymatic route. Molecules, 25(8), 1882. https://doi.org/10.3390/molecules25081882

Brydson, J. A. (1999). Plastics Materials. (7th ed.). Oxford, UK: Butterworth-Heinemann.

Carella, P., Isaacs, M., & Cameron, R. K. (2015). Plasmodesmata‐located protein overexpression negatively impacts the manifestation of systemic acquired resistance and the long‐distance movement of Defective in Induced Resistance1 in Arabidopsis. Plant Biology, 17(2), 395-401. https://doi.org/10.1111/plb.12234

Cecchini, N. M., Roychoudhry, S., Speed, D.J., Steffes, K., Tambe, A., Zodrow, K., Konstantinoff, K., Jung, H. W., Engle, N. L., Tschaplinski, T. J., & Greenberg, J. T. (2019). Underground azelaic acid–conferred resistance to Pseudomonas syringae in Arabidopsis. Molecular Plant-Microbe Interactions, 32(1), 86-94. https://doi.org/10.1094/mpmi-07-18-0185-r

Chanda, B., Xia, Y. E., Mandal, M. K., Yu, K., Sekine, K.-T., Gao, Q.-M., Selote, D., Hu, Y., Stromberg, A., Navarre, D., Kachroo, A., & Kachroo, P. (2011). Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nature Genetics, 43, 421-427. https://doi.org/10.1038/ng.798

Chaturvedi, R., Venables, B., Petros, R. A., Nalam, V., Li, M., Wang, X., Takemoto, L. J., & Shah, J. (2012). An abietane diterpenoid is a potent activator of systemic acquired resistance. The Plant Journal, 71(1), 161–172. https://doi.org/10.1111/j.1365-313x.2012.04981.x

Gao, Q. M., Zhu, S., Kachroo, P., & Kachroo, A. (2015). Signal regulators of systemic acquired resistance. Front in Plant Science, 6, 228. https://doi.org/10.3389/fpls.2015.00228

Gao, Q.-M., Yu, K., Xia, Y., Shine, M. B., Wang, C., Navarre, D., Kachroo, A., & Kachroo, P. (2014). Mono-and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Reports, 9(5), 1681-1691. https://doi.org/10.1016/j.celrep.2014.10.069

Gollnick, H. (1990). A new therapeutic agent: Azelaic acid in acne treatment. Journal of Dermatology Treatment, 1(S3), S23-S28. https://doi.org/10.3109/09546639009089041

Gollnick, H., & Layton, A. (2008). Azelaic acid 15% gel in the treatment of rosacea. Expert Opinion on Pharmacotherapy, 9(15), 2699-2706. https://doi.org/10.1517/14656566.9.15.2699

Haghighi, M., & Sheibanirad, A. (2018). Evaluating of Azealic Acid on Tomato Vegetative and Photosynthetic Parameters under Salinity Stress. Journal of Horticulture Science, 32(2), 287-300. https://doi.org/10.22067/jhorts4.v32i2.64405

Hartmann, M., Kim, D., Bernsdorff, F., Ajami-Rashidi, Z., Scholten, N., Schreiber, S., Zeier, T., Schuck, S., Reichel-Deland, V., & Zeier, J. (2017). Biochemical principles and functional aspects of pipecolic acid biosynthesis in plant immunity. Plant Physiology, 174(1), 124-153. https://doi.org/10.1104/pp.17.00222

Jones, D. A., & Takemoto, D. (2004). Plant innate immunity–direct and indirect recognition of general and specific pathogen-associated molecules. Current Opinion in Immunology, 16(1), 48-62. https://doi.org/10.1016/j.coi.2003.11.016

Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J., & Greenberg, J. T. (2009). Priming in systemic plant immunity. Science, 324(5923), 89-91. https://doi.org/10.1126/science.1170025

Kim, T.-J., & Lim, G.-H. (2023). Salicylic acid and mobile regulators of systemic immunity in plants: transport and metabolism. Plants, 12(5), 1013. https://doi.org/10.3390/plants12051013

Kinkema, M., Fan, W., & Dong, X. (2000). Nuclear localization of NPR1 is required for activation of PR gene expression. The Plant Cell, 12(12), 2339-2350. https://doi.org/10.1105/tpc.12.12.2339

Labudda, M., Dai, S., Deng, Z., & Li, L. (2022). Regulation of proteolysis and proteome composition in plant response to environmental stress. Frontiers in Plant Science, 13, 1080083. https://doi.org/10.3389/fpls.2022.1080083

Lemic-Stojcevic, L., Nias, A. H. W., & Breathnach, A. S. (1995). Effect of azelaic acid on melanoma cells in culture. Experimental Dermatology, 4(2), 79-81. https://doi.org/10.1111/j.1600-0625.1995.tb00226.x

Leong, H. J., & Oh, S.-G. (2018). Preparation of antibacterial TiO2 particles by hybridization with azelaic acid for applications in cosmetics. Journal of Industrial and Engineering Chemistry, 66, 242-247. https://doi.org/10.1016/j.jiec.2018.05.035

Manosalva, P. M., Park, S. W., Forouhar, F., Tong, L., Fry, W. E., & Klessig, D. F. (2010). Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Moleculer Plant-Microbe Interactions, 23(9), 1151-1163. https://doi.org/10.1094/mpmi-23-9-1151

Mastrofrancesco, A., Ottaviani, M., Aspite, N., Cardinali, G., Izzo, E., Graupe, K., Zouboulis, C. C., Camera, E., & Picardo, M. (2010). Azelaic acid modulates the inflammatory response in normal human keratinocytes through PPARγ activation. Experimental Dermatology, 19(9), 813-820. https://doi.org/10.1111/j.1600-0625.2010.01107.x

Mukhtarova, L. S., Mukhitova, F. K., Gogolev, Y. V., & Grechkin, A. N. (2011). Hydroperoxide lyase cascade in pea seedlings: Non-volatile oxylipins and their age and stress dependent alterations. Phytochemistry, 72(4-5), 356-364. https://doi.org/10.1016/j.phytochem.2011.01.013

Návarová, H., Bernsdorff, F., Döring, A.-C., & Zeier, J. (2012). Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. The Plant Cell, 24(12), 5123-5141. https://doi.org/10.1105/tpc.112.103564

Nazzaro-Porro, M. (1987). Azelaic acid. Journal of the American Academy of Dermatology, 17(6), 1033-1041. https://doi.org/10.1016/S0190-9622(87)70294-1

Parker, J. E. (2009.) The quest for long-distance signals in plant systemic immunity. Science Signaling, 2(70), pe31. https://doi.org/10.1126/scisignal.270pe31

Pitzschke, A., Datta, S., & Persak, H. (2014). Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. Molecular Plant, 7(4), 722-738. https://doi.org/10.1093/mp/sst157

Rodrigues, F. C. T., Silveira, P. R., Cacique, I. S., Oliveira, L. M., & Rodrigues, F. A. (2023). Soybean plants sprayed with azelaic and hexanoic acids and infected by Phakopsora pachyrhizi display better photosynthetic performance and a robust antioxidative metabolism. Journal of Phytopathology, 171(7-8), 320-332. https://doi.org/10.1111/jph.13184

Shah, J., & Zeier, J. (2013). Long-distance communication and signal amplification in systemic acquired resistance. Frontiers in Plant Science, 4, 30. https://doi.org/10.3389/fpls.2013.00030

Shah, J., Chaturvedi, R., Chowdhury, Z., Venables, B., & Petros, R. A. (2014). Signaling by small metabolites in systemic acquired resistance. The Plant Journal, 79(4), 645-658. https://doi.org/10.1111/tpj.12464

Van Wees, S. C. M., Van der Ent, S., & Pieterse, C. M. J. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11(4), 443-448. https://doi.org/10.1016/j.pbi.2008.05.005

Wang, C., El-Shetehy, M., Shine, M. B., Yu, K., Navarre, D., Wendehenne, D., Kachroo, A., & Kachroo, P. (2014). Free radicals mediate systemic acquired resistance. Cell Reports, 7(2), 348-355. https://doi.org/10.1016/j.celrep.2014.03.032

Winter, P. S., Bowman, C. E., Villani, P. J., Dolan, T. E., & Hauck, N. R. (2014). Systemic acquired resistance in moss: Further evidence for conserved defense mechanisms in plants. PloS One, 9(7), e101880. https://doi.org/10.1371/journal.pone.0101880

Wubben, M. J. E., Jin, J., & Baum T. J. (2008). Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. Molecular Plant-Microbe Interactions, 21(4), 424-432. https://doi.org/10.1094/mpmi-21-4-0424

Xu, Z.-Y., Zhang, X., Schläppi, M., & Xu, Z.-Q. (2011). Cold-inducible expression of AZI1 and its function in improvement of freezing tolerance of Arabidopsis thaliana and Saccharomyces cerevisiae. Journal of Plant Physiology, 168(13), 1576-1587. https://doi.org/10.1016/j.jplph.2011.01.023

Yu, K., Soares, J. M., Mandal, M. K., Wang, C., Chanda, B., Gifford, A. N., Fowler, J. S., Navarre, D., Kachroo, A., & Kachroo, P. (2013). A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Reports, 3(4), 1266-1278. https://doi.org/10.1016/j.celrep.2013.03.030

Zoeller, M., Stingl, N., Krischke, M., Fekete, A., Waller, F., Berger, S., & Mueller, M. J. (2012). Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiology, 160(1), 365-378. https://doi.org/10.1104/pp.112.202846

Published

06-02-2024

How to Cite

Dinler, B. S., and H. Cetinkaya. “An An Overview on Azelaic Acid: Biosynthesis, Signalling and the Action under Stress Conditions in Plants”. Journal of Plant Stress Physiology, vol. 10, Feb. 2024, pp. 8-12, doi:10.25081/jpsp.2024.v10.8725.

Issue

Section

Articles