Evaluation of rice (Oryza sativa L.) genotypes for low phosphorus stress tolerance

Authors

  • Maitry Roy Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
  • Sheikh Mahfuja Khatun Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
  • Lutful Hassan Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
  • Mohammad Anwar Hossain Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh

DOI:

https://doi.org/10.25081/jpsp.2023.v9.8598

Keywords:

Phosphorus deficiency, Yield reduction, Principal component, Tolerance indices, Correlation co-efficient

Abstract

Phosphorus (P) deficiency is a prime factor limiting rice growth and yield around the globe. Understanding how plants respond to P starvation is very important for breeding varieties with enhanced P uptake and use efficiency. To assess the effect of low P stress on yield and yield contributing traits, an experiment was conducted using six rice genotypes applying two treatments (optimum and deficient P conditions). Data on yield and yield attributing traits viz., days to first flowering (DFF), days to maturity (DM), plant height (PH), number of total tillers/plant (NTTP), number of effective tillers/plant (NETP), panicle length (PL), 100-seed weight (100-SW) and yield per plant (YPP) were recorded. Analysis of variance showed highly significant variation among the genotypes (G), treatments (T) and G × T interaction. When compared with control, a significant reduction in yield and yield attributing traits was observed in most of the studied genotypes in response to low P stress. The highest reduction in YPP was recorded in BRRI dhan78 whereas the lowest reduction was observed in Binadhan-17. Principal component analysis revealed that the first three principal components explained 85.2% of the total variation. Yield per plant (g) showed significant positive correlation with PH, PL, NTTP and NETP whereas it showed significant negative correlation with DFF, DM and 100-SW. Based on stress tolerance indices Binadhan-17, BRRI dhan71 and BRRI dhan79 were categorized as tolerant genotypes and selected for cultivation in P deficient areas and are recommended for the genetic improvement of low P stress tolerance in rice.

Downloads

Download data is not yet available.

References

Atakora, W. K., Fosu, M., Abebrese, S. O., Asante, M., & Wissuwa, M. (2015). Evaluation of low phosphorus tolerance of rice varieties in Northern Ghana. Sustainable Agriculture Research, 4(4), 109-114. https://doi.org/10.5539/sar.v4n4p109

Balyan, J. K., & Singh, M. (2005). Effect of seed inoculation, different levels of irrigation and phosphorus on nodulation and root growth development of lentil. Research on Crops, 6(1), 32-34.

Basavaraj, P. S., Gireesh, C., Bharamappanavara, M., Manoj, C. A., Ishwaryalakshmi, L. V. G., Senguttuvel, P., Sundaram, R. M., Subbarao, L. V., & Anantha, M. S. (2022). Genetic analysis of introgression lines of Oryza rufipogon for improvement of low phosphorous tolerance in indica rice. Indian Journal of Genetics Plant Breeding, 82(2), 135-142. https://doi.org/10.31742/IJGPB.82.2.1

Bhuiyan, N. I. (1988). Co-ordinated project on potassium studies. Progress Report. BARI, Joydevpur, Gazipur.

Biswas, J. C., & Nahar, U. A. (2019). Soil nutrient stress and rice production in Bangladesh. In M. Hasanuzzaman, M. Fujita, K. Nahar & J. K. Biswas (Eds.), Advances in rice research for abiotic stress tolerance (pp. 431-445) Sawston, UK: Woodhead Publishing. https://doi.org/10.1016/B978-0-12-814332-2.00021-6

Blazquez, M. A., Green, R., Nilsson, O., Sussman, M. R., & Weigel, D. (1998). Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. The Plant Cell, 10(5), 791-800. https://doi.org/10.1105/tpc.10.5.791

Brejda, J. J., Moorman, T. B., Smith, J. L., Karlen, D. L., Allan, D. L., & Dao, T. H. (2000). Distribution and variability of surface soil properties at a regional scale. Soil Science Society of America Journal, 64(3), 974-982. https://doi.org/10.2136/sssaj2000.643974x

Cancellier, E. L., Brandao, D. R., Silva, J., Santos, M. M., & Fidelis, R. R. (2012). Phosphorus use efficiency of upland rice cultivars on Cerrado soil. Ambience, 8(2), 307-318. https://doi.org/10.5777/ambiencia.2012.02.06

Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009

Deng, Y., Men, C., Qiao, S., Wang, W., Gu, J., Liu, L., Zhang, Z., Zhang, H., Wang, Z., & Yang, J. (2020). Tolerance to low phosphorus in rice varieties is conferred by regulation of root growth. The Crop Journal, 8(4), 534-547. https://doi.org/10.1016/j.cj.2020.01.002

Dobermann, A., & Fairhurst, T. (2000). Phosphorus deficiency. In Rice: nutrient disorders and nutrient management (pp. 60-71). Los Baños, Philippines: International Rice Research Institute.

Egashira, K., Takenaka, J., Shuto, S., & Moslehuddin, A. Z. M. (2003). Phosphorus status of some paddy soils in Bangladesh. Soil Science and Plant Nutrition, 49(5), 751-755. https://doi.org/10.1080/00380768.2003.10410335

Emi, F. R., Khatun, H., Yasmine, F., Hasan, A. K., & Hossain, M. A. (2021). Morphological variability and genetic diversity of Aman rice germplasm of Bangladesh cultivated in Mymensingh region. Plant Science Today, 8(4), 972-985.

Fageria, N. K., Knupp, A. M., & Moraes M. F. (2011). Phosphorus nutrition of lowland rice in tropical lowland soil. Communications in Soil Science and Plant Analysis, 44(20), 2932-2940. https://doi.org/10.1080/00103624.2013.829485

Fageria, N. K., & Knupp, A. M. (2013). Upland rice phenology and nutrient uptake in tropical climate. Journal of Plant Nutrition, 36(1), 1-14. https://doi.org/10.1080/01904167.2012.724136

Fernandez, G. C. (1992). Effective selection criteria for assessing plant stress tolerance. In C. G. Kuo (Eds.), International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress (pp. 257-270) Taiwan: AVRDC Publication.

Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), 897-912. https://doi.org/10.1071/AR9780897

GAIN. (2013). Bangladesh: Grain and Feed Annual. Global Agriculture Information Network. Retrieved from https://www.fas.usda.gov/data/bangladesh-grain-and-feed-annual-6

Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R. G., Ricciardi, G. L., & Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77(4), 523-531. https://doi.org/10.4141/P96-130

Guttieri, M. J., Stark, J. C., O΄Brien, K., & Souza, E. (2001). Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Science, 41(2), 327-335. https://doi.org/10.2135/cropsci2001.412327x

Havlin, J. L., Tisdale, S. L., Beaton, J. D., & Nelson, W. L. (2005). Soil fertility and fertilizers: an introduction to nutrient management. (8th ed.). Upper Saddle River, New Jersey: Pearson Education, Inc.

Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237, 173-181. https://doi.org/10.1023/A:1013351617532

Ismail, A. M., Heuer, S., Thomson, M. J., & Wissuwa, M. (2007). Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology, 65, 547-570. https://doi.org/10.1007/s11103-007-9215-2

Jiang, C., Gao, X., Liao, L., Harberd, N. P., & Fu, X. (2007). Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology, 145(4), 1460-1470. https://doi.org/10.1104/pp.107.103788

Kale, R. R., Anila, M., Swamy, H. K. M., Bhadana, V. P., Rani, C. V. D., Senguttuvel, P., Subrahmanyam, D., Hajira, S. K., Rekha, G., Ayyappadass, M., Laxmiprasanna, B., Punniakotti, E., Kousik, M. B. V. N., Swapnil. K., Dilip, T., Sinha, P., Harika, G., Pranathi, K., Chaitra, K.,...Sundaram, R. M. (2020). Morphological and molecular screening of rice germplasm lines for low soil P tolerance. Journal of Plant Biochemistry and Biotechnology, 30(2), 275- 286. https://doi.org/10.1007/s13562-020-00586-5

Kale, R. R., Rani, C. V. D., Anila, M., Swamy, H. K. M., Bhadana, V. P., Senguttuvel, P., Subrahmanyam, D., Dass, M. A., Swapnil, K., Anantha, M. S., Punniakotti, E., Prasanna, B. L., Rekha, G., Sinha, P., Kousik, M. B. V. N., Dilip, T., Hajira, S. K., Brajendra, P., Mangrauthia, S. K.,...Sundaram, R. M. (2021). Novel major QTLs associated with low soil phosphorus tolerance identified from the Indian rice landrace, Wazuhophek. PLoS One, 16(7), e0254526. https://doi.org/10.1371/journal.pone.0254526

Kavitha, G., Sekhar, M. R., Reddy, D. M., Reddy, V. L. N., Kalyani, M. B., Sudhakar, P., & Senguttuvel, P. (2022). Marker assisted backcrossing to develop the low phosphorus tolerant version of KMR-3R, a popular restorer line of hybrid rice. The Pharma Innovation Journal, 11(6), 1983-1991.

Khodarahmpour, Z., Choukan, R., Bihamta, M. R., & Hervan, E. M. (2011). Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under Khuzestan province conditions. Journal of Agricultural Science and Technology, 13(1), 111-121.

Khush, G. S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology, 59, 1-6. https://doi.org/10.1007/s11103-005-2159-5

Kirk, G. J. D., George, T., Courtois, B., & Senadhira, D. (1998). Opportunities to improve phosphorus efficiency and soil fertility in rain fed lowland and upland rice ecosystems. Field Crop Research, 56(1-2), 73-92. https://doi.org/10.1016/S0378-4290(97)00141-X

Luquet, D., Zhang, B. G., Dingkuhn, M., Dexet, A., & Clément-Vidal, A. (2005). Phenotypic plasticity of rice seedlings: Case of phosphorus deficiency. Plant Production Science, 8(2), 145-151. https://doi.org/10.1626/pps.8.145

Malhotra, H., Vandana, Sharma, S., & Pandey, R. (2018). Phosphorus nutrition: plant growth in response to deficiency and excess. In M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar, & B. Hawrylak-Nowak (Eds.), Plant Nutrients and Abiotic Stress Tolerance (pp.171-190) Singapore: Springer. https://doi.org/10.1007/978-981-10-9044-8_7

Manoj, C. A., Muralidhara, B., Basavaraj, P. S., Honnappa, Gireesh, C., Sundaram, R. M., Senguttuvel, P., Suneetha, K., Rao, L. V. S., Kemparaju, K. B., Brajendra, P., Kumar, R. M., Rathod, S., Salimath, P. M., Lokesha, R., & Anantha, M. S. (2023). Evaluation of rice genotypes for low phosphorus stress and identification of tolerant genotypes using stress tolerance indices. Indian Journal of Genetics, 83(1), 24-31. https://doi.org/10.31742/ISGPB.83.1.4

Marschner, P. (2012). Marschner’s Mineral Nutrition of Higher Plants. London, UK: Elsevier. https://doi.org/10.1016/C2009-0-63043-9

Miriyala, A., Giri, A., & Sundaram, R. M. (2022). Evaluation of recombinant inbred lines for low soil phosphorous tolerance derived from Rasi-a low soil phosphorous tolerant variety. Electronic Journal of Plant Breeding, 13(3), 800-809. https://doi.org/10.37992/2022.1303.102

Nadira, U. A., Ahmed, I. M., Zeng, J., Bibi, N., Cai, S., Wu, F., & Zhang, G. (2014). The changes in physiological and biochemical traits of Tibetan wildand cultivated barley in response to low phosphorus stress. Soil Science and Plant Nutrition, 60, 832-842. https://doi.org/10.1080/00380768.2014.949853

Nord, E. A., & Lynch, J. P. (2008). Delayed reproduction in Arabidopsis thaliana improves fitness in soil with suboptimal phosphorus availability. Plant, Cell & Environment, 31(10), 1432-1441. https://doi.org/10.1111/j.1365-3040.2008.01857.x

Pieters, A. J., Paul, M. J., & Lawlor, D. W. (2001). Low sink demand limits photosynthesis under P(i) deficiency. Journal of Experimental Botany, 52(358), 1083-1091. https://doi.org/10.1093/jexbot/52.358.1083

Ratna, M., Begum, S., Husna, A., Dey, S. R., & Hossain M. S. (2015). Correlation and path coefficients analyses in basmati rice. Bangladesh Journal of Agricultural Research, 40(1), 153-161. https://doi.org/10.3329/bjar.v40i1.23768

Razaq, M., Zhang, P., Shen, H.-l., & Salahuddin. (2017). Influence of nitrogen and phosphorus on the growth and root morphology of Acer mono. PLoS One, 12(2), e0171321. https://doi.org/10.1371/journal.pone.0171321

Rosielle, A. A., & Hamblin, J. (1981). Theoretical Aspects of Selection for Yield in Stress and non-Stress Environments. Crop Science, 21(6), 943-946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x

Runge-Metzger, A. (1995). Closing the cycle: Obstacles to efficient P management for improved global security. In H. Tiessen (Eds.), Phosphorus in the Global Environment: Transfers, Cycles, and Management (pp. 27-42) New York: John Wiley and Sons.

Rychter, A. M., Rao, I. M., & Cardoso, J. A. (2005). Role of phosphorus in photosynthetic carbon metabolism. In M. Pessarakli (Eds.), Handbook of Photosynthesis (pp.123-148) London, UK: Taylor and Francis.

Swamy, H. K. M., Anila, M., Kale, R. R., Bhadana, V. P, Anantha, M. S., Brajendra, P., Hajira, S. K., Balachiranjeevi, C. H., Prasanna, B. L, Pranathi, K., Dilip, T., Bhaskar, S., Kumar, V. A., Kousik, M. B. V. N., Harika, G., Swapnil, K., Rekha, G., Cheralu, C., Shankar, V. G.,...Sundaram, R. M. (2019). Phenotypic and molecular characterization of rice germplasm lines and identification of novel source for low soil phosphorus tolerance in rice. Euphytica, 215(7), 118. https://doi.org/10.1007/s10681-019-2443-0

Tyagi, W., Rai, M., & Dohling, A. K. (2012). Haplotype analysis for Pup1 locus in rice genotypes of North-Eastern and Eastern India to identify suitable donors tolerant to low phosphorus. SABRAO Journal of Breeding and Genetics, 44(2), 398-405.

Usuda, H., & Shimogawara, K. (1991). Phosphate deficiency in maize. I. Leaf phosphate status, growth, photosynthesis and carbon partitioning. Plant and Cell Physiology, 32(4), 497-504. https://doi.org/10.1093/oxfordjournals.pcp.a078107

Vance, C. P., Uhde-Stone, C., & Allan, D. L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytologist, 157(3), 423-447. https://doi.org/10.1046/j.1469-8137.2003.00695.x

Verma, V., Vishal, B., Kohli, A., & Kumar, P. P. (2021). Systems-based rice improvement approaches for sustainable food and nutritional security. Plant Cell Reports, 40, 2021-2036. https://doi.org/10.1007/s00299-021-02790-6

Wissuwa, M., & Ae, N. (2001). Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breeding, 120(1), 43-48. https://doi.org/10.1046/j.1439-0523.2001.00561.x

Yadev, S., & Kumar, V. (2018). Feeding the world while caring for the planet. Direct Seeded Rice Consortium Newsletter, 1(2), 1-18.

Ye, T., Li, Y., Zhang, J., Hou, W., Zhou, W., Lu, J., Xing, Y. & Li, X. (2019). Nitrogen, phosphorus, and potassium fertilization affects the flowering time of rice (Oryza sativa L.). Global Ecology and Conservation, 20, e00753. https://doi.org/10.1016/j.gecco.2019.e00753

Yugandhar, P., Veronica, N., Panigrahy, M., Nageswara, D. R., Subrahmanyam, D., Voleti, S. R., Mangrauthia, S. K., Sharma, R. P., & Sarla, N. (2017). Comparing hydrophonics, sand, and medium to evaluate contrasting rice Nagina mutants for tolerance to phosphorus deficiency. Crop Science, 57(4), 2089-2097. https://doi.org/10.2135/cropsci2016.07.0594

Published

26-10-2023

How to Cite

Roy, M. ., S. M. . Khatun, L. . Hassan, and M. A. Hossain. “Evaluation of Rice (Oryza Sativa L.) Genotypes for Low Phosphorus Stress Tolerance”. Journal of Plant Stress Physiology, vol. 9, Oct. 2023, pp. 27-35, doi:10.25081/jpsp.2023.v9.8598.

Issue

Section

Articles

Most read articles by the same author(s)