Oxidative defense mechanisms of proline on growth, nutritional compositions and antioxidant activities in water-stressed Solanum aethiopicum L.


  • A. W. Ojewumi Department of Botany, Lagos State University, Badagry Express Way, Ojo, Lagos, Nigeria
  • M. O. Keshinro Department of Botany, Lagos State University, Badagry Express Way, Ojo, Lagos, Nigeria
  • L. F. Mabinuori Department of Botany, Lagos State University, Badagry Express Way, Ojo, Lagos, Nigeria
  • S. C. O. Makinde Department of Botany, Lagos State University, Badagry Express Way, Ojo, Lagos, Nigeria




Water tolerance, water deficit, nutrient assimilation, growth rate, photosynthesis, chlorophyll


The growth performance of vegetables is influenced by water availability. This study explored the use of proline as an osmoregulator on growth, nutritional compositions and oxidative enzyme activities in water-stressed Solanum aethiopicum. Seedlings of the vegetable were subjected to 20, 40, 60, 80 and 100% proline against droughted and well-watered. Morphological and physiological characters, nutritional compositions and oxidative activities were determined in the vegetable. Plant height (20.37 cm), number of leaves (35.75 cm), Leaf area (347.55 m2), specific leaf area (72.02 m2 g-1), leaf area index (0.71 m2 m-2) relative growth rate (0.21 mg g-1 day-1), net assimilation rate (0.058 mg g-1 day-1) and leaf area ratio (0.19 m2 g-1) were higher in S. aethiopicum seedlings sprayed with 100% proline. Crude fat (0.11%), ash (1.57%), crude fibre (1.49%), crude protein (2.44%) and carbohydrate (3.50%) were higher in the leaves of the vegetable sprayed with 100% proline. Higher vitamin A (84.21 mg/100 g), vitamin B3 (0.56 mg/100 g) and vitamin C (10.97 mg/100 g) were observed in the leaves of the vegetable under 100% proline. Furthermore, sodium (8.93 mg/100 g), potassium (402.20 mg/100 g), calcium (121.55 mg/100 g) and magnesium (58.80 mg/100 g) were recorded in the leaves of well-watered. Higher SOD (0.88 mg g-1), APX (0.95 mg g-1), CAT (0.98 mg g-1), GR (0.96 ug g-1) and GST (14.52 mg g-1) were observed in the roots of S. aethiopicum droughted. Although all the proline levels sustained growth components, nutritional compositions and oxidative enzymes of S. aethiopicum under water stress, however, 100% proline produced better ameliorative effects.


Download data is not yet available.


Abdelhamid, M. T., Taie, H. A. A., Dawood, M. G., & El-Gioushy, S. F. (2013). Alleviation of the adverse effect of water stress on wheat plant using proline, abscisic acid and yeast under different plant growth stages. International Journal of Current Microbiology and Applied Sciences, 2(10), 232-244.

Ali, Q., Ashraf, M., & Athar, H. (2007). Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pakistan Journal of Botany, 39(4), 1133-1144.

Alireza, P., Fahime, S., Mohammad, R. Z., & Reza, D. (2012). Effect of irrigation disruption and biological nitrogen on some physiological and morphological characters of leaf in Calendula officinalis L. Journal of Medicinal Plants Research, 6(1), 79-87. https://doi.org/10.5897/JMPR11.1014

Anjum, S. A., Xie, X.-Y., Wang, L.-C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026-2032.

AOAC. (1980). Official Methods of Analysis 14th Edition. Association of Official Analytical Chemist, Washington DC.

AOAC. (2000). Official methods of Analysis of A.O.A.C International (17th Ed., Vol. 11, pp. 920-957).

Bahadur, A., Chatterjee, A., Kumar, R., Singh, M., & Naik, P. S. (2011). Physiological and biochemical basis of drought tolerance in vegetables. Vegetable Science, 38(1), 1-16.

Dawood, M. G., & Sadak, M. S. (2014). Physiological role of glycinebetaine in alleviating the deleterious effects of drought stress on canola plants (Brassica napus L.). Middle East Journal of Agricultural Research, 3(4), 943-954.

Deivanai, S., Ravi, S. X., & Kumar, R. S. (2011). Influence of proline on antioxidant status of drought-stressed groundnut (Arachis hypogaea L.) plants. Acta Physiologiae Plantarum, 33(1), 131-139.

Dhotare, V. A., Guldekar, V. D., Bhoyar, S. M., & Ingle, S. N. (2019). Evaluation of Soil Nutrient Index and their Relation with Soil Chemical Properties of Washim Road Farm of Dr. PDKV Akola, Maharashtra, India. International Journal of Current Microbiology and Applied Sciences, 8(9), 1773-1779. https://doi.org/10.20546/ijcmas.2019.809.205

Ebert, A. W. (2014). Potential of neglected and underutilized horticultural crops in the tropics. Acta Horticulturae, 979, 179-188.

El Moukhtari, A., Cabassa-Hourton, C., Farissi, M., & Savouré, A. (2020). How does proline treatment promote salt stress tolerance during crop plant development? Frontiers in Plant Science, 11, 1127. https://doi.org/10.3389/fpls.2020.01127

Emmanuel, G. A. (2014). Effect of Watering Regimes and Water Quantity on the Early Seedling Growth of Picralimanitida (Stapf). Sustainable Agriculture Research, 3(2), 2551-2556. https://doi.org/10.5539/sar.v3n2p35

Fang, Y., Xiong, L., & General, I. S. (2011). Towards the understanding of regulatory networks in drought-induced transient gene expression changes in Arabidopsis thaliana. Plant Journal, 45(6), 941-953.

Foyer, C. H., Lopez-Delgado, H., Dat, J. F., & Scott, I. M. (1999). Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum, 100(2), 241-254. https://doi.org/10.1111/j.1399-3054.1997.tb04780.x

Gul, B., Ansari, R., Flowers, T. J., & Khan, M. A. (2010). Germination strategies of halophyte seeds under salinity. Environmental and Experimental Botany, 92, 4-18. https://doi.org/10.1016/j.envexpbot.2012.11.006

Hayssam, M., Ali, Y., Shaddad, M. A. K., & Abbas, T. A. (2013). Improving growth and productivity of water-stressed maize plants by exogenous application of proline and abscisic acid. Journal of Stress Physiology & Biochemistry, 9(2), 174-190.

Hussain, I., Ullah, R., Ullah, R., Khurram, M., Ullah, N., Baseer, A., Khan, F. A., Khattak, M. U. R., Zahoor, M., Khan, J., & Khan, N. (2011). Phytochemical analysis of selected medicinal plant. African Journal of Biotechnology, 10(38), 7487-7492.

Hussian, I., Saleem, M., Iqbal, Y., & Khalil, S. J. (2006). Comparison of Vitamin C Contents in Commercial Tea Brands and Fresh Tea Leaves. Journal of the Chemical Society of Pakistan, 28(5), 421-425.

Kadiri, M. (2014). Studies on physiological amelioration of deleterious effects of drought on Sorghum bicolor (1) Moench. Direct Research Journal of Agriculture and Food Science, 2(3), 25-27.

Kadiri, M., Mustapha, Y., Aliyu, B. S., & Arzai, A. H. (1999). Effect of Indole-3-Acetic Acid and Coconut Milk on the Vegetative growth and Yield of Red Pepper (Capsicum Annum L.) Bayero Journal of Pure and Applied Sciences, 5, 313-316.

Kamba, A. S., Kayitesi, E., & Agaba, H. (2013). Ethnobotanical survey of Solanum aethiopicum L. (Solanaceae) in Rwanda. African Journal of Plant Science, 7(7), 291-299.

Khanna-Chopra, R., Semwal, V. K., Lakra, N., & Pareek, A. (2019). Proline-A key regulator conferring plant tolerance to salinity and drought. In M. Hasanuzzaman, M. Fujita, H. Oku, M. T. Islam (Eds.), Plant Tolerance to Environmental Stress (pp. 59-80). Florida, US: CRC Press.

Liu, H.-J., Huang, C.-P., Tong, P.-J., Yang, X., Cui, M.-M., & Cheng, Z.-H. (2020). Response of axillary bud development in garlic (Allium sativum L.) to seed cloves soaked in gibberellic acid (GA3) solution. Journal of Integrative Agriculture, 19(4), 1044-1054. https://doi.org/10.1016/S2095-3119(20)63156-2

Lobato, A. K. D. S., Barbosa, M. A. M., Alsahli, A. A., Lima, E. J. A., & Silva, B. R. S. D. (2021). Exogenous salicylic acid alleviates the negative impacts on production components, biomass and gas exchange in tomato plants under water deficit improving redox status and anatomical responses. Physiologia Plantarum, 172(2), 869-884. https://doi.org/10.1111/ppl.13329

Masia, A. (1998). A biochemical and molecular characterization of a senescence-enhanced cDNA from carnation petals. Plant Molecular Biology, 38, 1257-1264.

Mwinuka, P. R., Mbilinyi, B. P., Mbungu, W. B., Mourice, S. K., Mahoo, H. F., & Schmitter, P. (2021). Optimizing water and nitrogen application for neglected horticultural species in tropical sub-humid climate areas: A case of African eggplant (Solanum aethiopicum L.). Scientia Horticulturae, 276, 109756. https://doi.org/10.1016/j.scienta.2020.109756

Ojewumi, A. W., & Kadiri, M. (2021). Physiological responses of photosynthetic and respiratory rates of some leafy vegetables to Spent engine oil contamination. Jewel Journal of Scientific Research, 6(2), 188-189.

Ojewumi, A. W., Junaid, O. E., & Feyibunmi G. O. (2022a). Morpho-Physiological Assessment of Water Stress Ameliorative Potential of Some Osmoprotectants on Growth Performance and Chlorophyll Contents of Cayenne Pepper (Capsicum annum). FUOYE Journal of Pure and Applied Sciences, 7(3), 13-19.

Ojewumi, M. E., Adebiyi, F. M., Ogunlaja, A. S., Adeniyi, O. A., Olasehinde, G. I., & Adewoye, C. A. (2022b). Folia Application of L-Proline Stimulates Growth, Yield and Quality Attributes of Abelmoschus esculentus L. Moench. Plants, 11(1), 148.

Rasheed, R., Wahid, A., Ashraf, M. A., Rasheed, A., & Hussain, I. (2014). Exogenous proline modulates antioxidant defense system and enhances methylglyoxal detoxification in wheat (Triticum aestivum L.) seedlings under drought stress. Acta Physiologiae Plantarum, 36(4), 965-982.

Raza, A., Charagh, S., Abbas, S., Hassan, M. U., Saeed, F.., Haider, S., Sharif, R., Anand, A., Corpas, F. J., Jin, W., & Varshney, R. K. (2023). Assessment of proline function in higher plants under extreme Temperatures. Plant Biology, 25(3), 379-395.

Sakio, H. (2005). Effects of flooding on growth of seedlings of woody riparian species. Journal of Forest Research, 10(4), 341-346. https://doi.org/10.1007/s10310-005-0156-9

Sanchez, F. J., Manzanares, M., de Andres, E. F., Tenorio, J. L., & Ayerbe, L. (2012). Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Research, 59(3), 225-235. https://doi.org/10.1016/S0378-4290(98)00125-7

Semida, W. M., Abdelkhalik, A., Rady, M. O. A., Marey, R. A., & El-Mageed, T. A. A. (2020). Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Scientia Horticulturae, 272, 109580. https://doi.org/10.1016/j.scienta.2020.109580

Shao, H.-B., Chu, L.-Y., Wu, G., Zhang, J.-H., Lu, Z.-H., & Hu, Y.-C. (2007). Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids and Surfaces B: Biointerfaces, 52(2), 143-149. https://doi.org/10.1016/j.colsurfb.2006.09.004

Shishira, T., Nivedita, P., Myrene, R. D., & Kavitha G. S. (2016). Antioxidant marker Response of Solanum melongena to salinity stress. Journal of Chemical and Pharmaceutical Research, 8(7), 533-539.

Taher, D., Solberg, S. Ø., Prohens, J., Chou, Y., Rakha, M., & Wu, T. (2017). World Vegetable Center Eggplant Collection: Origin, Composition, Seed Dissemination and Utilization in Breeding. Frontiers in Plant Science, 8, 1484. https://doi.org/10.3389/fpls.2017.01484

Tatar, O., & Gevrek, M. N. (2008). Influence of water stress on proline accumulation, lipid peroxidation and water content of wheat. Asian Journal of Plant Sciences, 7(4), 409-412. https://doi.org/10.3923/ajps.2008.409.412

Vendruscolo, E. C. G., Schuster, I., Pileggi, M., Scapim, C. A., Molinari, H. B. C., Marur, C. J., & Vieira, L. G. E. (2007). Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 164(10), 1367-1376. https://doi.org/10.1016/j.jplph.2007.05.001



How to Cite

Ojewumi, A. W., M. O. Keshinro, L. F. Mabinuori, and S. C. O. Makinde. “ Nutritional Compositions and Antioxidant Activities in Water-Stressed Solanum Aethiopicum L”. Journal of Plant Stress Physiology, vol. 9, July 2023, pp. 1-9, doi:10.25081/jpsp.2023.v9.8391.