Physiological responses of cowpea simultaneously exposed to water deficit stress and varying light intensities at vegetative and reproductive growth stages

Authors

  • O. I. Adeniyi Environmental Biology Unit, Department of Crop Protection and Environmental Biology, University of Ibadan, Ibadan, Nigeria
  • S. A. Adejumo Environmental Biology Unit, Department of Crop Protection and Environmental Biology, University of Ibadan, Ibadan, Nigeria
  • M. Fofana Africa Rice, International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria, International Institute of Tropical Agriculture (IITA), Bukavu, DR Congo
  • F. T. Adegbehingbe Africa Rice, International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria

DOI:

https://doi.org/10.25081/jpsp.2022.v8.7896

Keywords:

Light intensity, drought, cowpea, photosynthesis, photo-inhibition

Abstract

A combination of stresses as it occurs on the field poses more challenges to crop production than individual stress. Crops’ response to single stress also differs from that of combined stresses. The morpho-physiological responses of two cowpea varieties (IT89KD-288 and IT99K573-1-1) to a combination of stresses (water deficit stress and high light intensity) were investigated at different growth stages. Three levels of light intensities (L3: 259 Lux- 36%, L2: 394 Lux-55% and L1: 710.2 Lux-100%) were imposed using one, two and zero layer(s) of the net, respectively, while, water deficit stress at four levels (W1: no water stress; 0-5 bars, W2: moderate water stress; 5-15 bars, W3: moderately-severe; 15-40 bars and W4: severe water stress; 40 -70 bars) was imposed differently at vegetative and reproductive growth stages. Data were collected on the cowpea yield, Leaf Temperature (LT), Chlorophyll (C), Photosynthesis (P), Stomatal Conductance (SC) and Canopy Transpiration Rate (CTR). Exposure to W4 under L1 considerably reduced cowpea yield by 80% compared to those grown under L3 and full watering. Reduced light intensity enhanced cowpea grain yield irrespective of water deficit stress and IT89KD-288 was superior to IT99K573-1-1. Reduction in light intensity also increased the SC from 55.18 in L1 to 76.88 in 36 % L3. Full light intensity without water stress (100% light intensity), increased C content, while severe water stress reduced the C content and CTR. Photosynthesis was, however, reduced under low light intensity compared to 100% light intensity. It was also observed that water deficit stress imposed at the reproductive stage did not affect P, CTR and SC unlike that of the vegetative stage. In conclusion, reduced light intensity enhanced cowpea tolerance to water deficit and increased yield. Cowpea response was dependent on growth stage, variety and severity of stress.

Downloads

Download data is not yet available.

References

Adelusi, A. A., & Aileme, J. D. (2006). Effect of light and nutrient stress on some growth parameters of cowpea (Vigna unguiculuta (L.) Walp). Research Journal of Botany, 1(2), 95-103.

Aderounmu, A. F. (2010). Silvicultural requirements for regeneration of Vitellria paradoxa. Doctoral Dissertation, University of Ibadan.

Akinyele, A. O. (2007). Silvicultural requirements for the regeneration of Buchholzia coriacea Engl. Seedlings. Doctoral Dissertation, University of Ibadan.

Anjum, F., Yaseen, M., Rasool, E., Wahid, A., & Anjum, S. (2003). Water stress in barley (Hordeum vulgare L.). I. Effect on morphological characters. Pakistan Journal of Agricultural Sciences, 40(1-2), 43–44.

Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197(3), 177-185. https://doi.org/10.1111/j.1439-037X.2010.00459.x

Balla, K., Karsai, I., Bonis, P., Kiss, T., Berki, Z., Horvath, A., Mayer, M., Bencze, S., & Veisz, O. (2019). Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress. PLoS ONE, 14(9), e0222639. https://doi.org/10.1371/journal.pone.0222639

Barnabás, B., Katalin, J., & Attila, F. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31(1), 11–38. https://doi.org/10.1111/j.1365-3040.2007.01727.x

Bertolini, L. T., Caine, R. S., & Gray, J. E. (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 10, 225. https://doi.org/10.3389/fpls.2019.00225

Bhatt, R. M., & Rao, N. K. S. (2005) Influence of pod load response of okra to water stress. Indian Journal of Plant Physiology, 10(1), 54-59.

Boguszewska-Mańkowska, D., Pieczyński, M., Wyrzykowska, A., Kalaji, H. M., Sieczko, L., Szweykowska-Kulińska, Z., & Zagdańska, B. (2018). Divergent strategies displayed by potato (Solanum tuberosum L.) cultivars to cope with soil drought. Journal of Agronomy and Crop Science, 204(1), 13–30. https://doi.org/10.1111/jac.12245

Brestic, M., Zivcak, M., Kunderlikova, K., & Allakhverdiev, S. I. (2016). High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynthesis Research, 130(1-3), 251–266. https://doi.org/10.1007/s11120-016-0249-7

Brito, M. E. B., Filho, G. D. de A., Wanderley, J. A. C., Melo, A. S. de, Costa, F. B. da, & Ferreira, M. G. P. (2013). Crescimento, fisiologia e produção do milho doce sob estresse hídrico. Bioscience Journal, 29(5), 1244-1254.

Du, N., Guo, W., Zhang, X., & Wang, R. (2010). Morphological and physiological responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. to water deficit stress. Acta Physiologiae Plantarum, 32(5), 839-848. https://doi.org/10.1007/s11738-010-0468-z

Dutta, A. C. (2003). Botany for Degree Students (pp.291- 293) New Delhi: Oxford University Press.

Ewansiha, S. U., & Singh, B. B. (2006). Relative drought tolerance of important herbaceous legumes and cereals in the moist and semi-arid regions of West Africa. Journal of Food, Agriculture & Environment, 4(2), 188-190.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212. https://doi.org/10.1051/agro:2008021

Fatokun, C. A. (2015). Breeding cowpea for resistance to insects pests: attempted crosses between Cowpea and Vigna vexillata. In C. A. Fatokun, S. A. Tarawali, B. B. Singh, P. M. Kormawa, M. Tamo (Eds.), Challenges and Opportunities for Enhancing Sustainable Cowpea Production (pp. 52) Ibadan, Nigeria: International Institute for Tropical Agriculture (IITA).

Fatokun, C. A., Bouka, O., & Muranaka, S. (2012). Evaluation of cowpea (Vigna unguiculata L. Walp.) germplasm lines for tolerance to drought. Plant Genetic Resources, 10(3), 171-176. https://doi.org/10.1017/S1479262112000214

Flexas, J., & Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Annals of Botany, 89(2), 183-189. https://doi.org/10.1093/aob/mcf027

Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(3), 269-279. https://doi.org/10.1055/s-2004-820867

Gagné-Bourque, F., Bertrand, A., Claessens, A., Aliferis, K. A., & Jabaji, S. (2016). Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Frontiers in Plant Science, 7, 584. https://doi.org/10.3389/fpls.2016.00584

Goufo, P., Moutinho-Pereira, J. M., Jorge, T. F., Correia, C. M., Oliveira, M. R., Rosa, E. A. S., António, C., & Trindade, H. (2017). Cowpea (Vigna unguiculata L. Walp.) Metabolomics: Osmoprotection as a Physiological Strategy for Drought Stress Resistance and Improved Yield. Frontiers in Plant Science, 8, 586. https://doi.org/10.3389/fpls.2017.00586

Hall, A. E. (2012). Phenotyping cowpeas for adaptation to drought. Frontiers in Plant Science, 8, 155. https://doi.org/10.3389/fphys.2012.00155

Hayatu, M., Muhammad, S. Y., & Habibu, U. A. (2014) Effect of water stress on the leaf relative water content and yield of some cowpea (Vigna Unguiculata (L) Walp.) genotypes. International Journal of Scientific & Technology Research, 3(7), 148-152.

Hossain, M. A., Pukclai, P., Silva, J. A. T. da, & Masayuki, F. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 37, 872875. https://doi.org/10.1155/2012/872875

Hurkman, W. J., McCue, K. F., Altenbach, S. B., Korn, A., Tanaka, C. K., Kothari, K. M., Johnson, E. L., Bechtel, D. B., Wilson, J. D., Anderson, O. D., & DuPont, F. M. (2003). Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 164(5), 873–881. https://doi.org/10.1016/S0168-9452(03)00076-1

Idso, S. B., Jackson, R. D., Pinter, P. J. Jr., Reginato, R. J., & Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorolgy, 24, 45-55.

Jacques, M. M., Gumiere, S. J., Gallichand, J., Celicourt, P., & Gumiere, T. (2020). Impacts of Water Stress Severity and Duration on Potato Photosynthetic Activity and Yields. Frontiers in Agronomy, 590312. https://doi.org/10.3389/fagro.2020.590312

Jia, W., & Zhang, J. (2008). Stomatal movements and long-distance signaling in plants. Plant Signaling & Behavior, 3(10), 772-777. https://doi.org/10.4161/psb.3.10.6294

Jiang, H., Dian, W., & Wu, P. (2003). Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry, 63(1), 53-59. https://doi.org/10.1016/S0031-9422(03)00005-0

Kaushal, N., Bhandari, K., Siddique, K. H. M., & Nayyar, H. (2016). Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food & Agriculture, 2(1), 1134380. https://doi.org/10.1080/23311932.2015.1134380

Kawamitsu, Y., Driscoll, T., & Boyer, J. S. (2000). Photosynthesis during desiccation in an Intertidal Alga and a Land Plant. Plant and Cell Physiology, 41(3), 344-353. https://doi.org/10.1093/pcp/41.3.344

Keenan, T. F., Sabate, S., & Gracia, C. A. (2010). The importance of mesophyll conductance in regulating forest ecosystem productivity during drought periods. Global Change Biology, 16, 1019-1034. https://doi.org/10.1111/j.1365-2486.2009.02017.x

Khaled, S. A. (2010). Effect of watering regime on yield and its components of Triticum aestivum var. el-phateah L. American Journal of Plant Physiology, 5, 291-294. https://doi.org/10.3923/ajpp.2010.291.294

Kusaka, M., Lalusin, A. G., & Fujimura, T. (2005). The maintenance of growth and turgor in pearl millet (Pennisetum glaucum [L.] Leeke) cultivars with different root structures and osmo-regulation under drought stress. Plant Science, 168(1), 1–14. https://doi.org/10.1016/j.plantsci.2004.06.021

Lawlor, D. W. (2002). Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Annals of Botany, 89(7), 871–885. https://doi.org/10.1093/aob/mcf110

Li, F., Bao, W., Wu, N., & You, C. (2008). Growth, biomass partitioning and water-use efficiency of a leguminous shrub (Bauhinia faberi var. microphylla) in response to various water availabilities. New Forests, 36, 53-65. https://doi.org/10.1007/s11056-008-9081-z

Liu, F., Jensen, C. R., & Andersen, M. N. (2005). A review of drought adaptation in crop plants: Changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Australian Journal of Agricultural Research, 56(11), 1245–1252. https://doi.org/10.1071/AR05062

Lombardini, L. (2006). Ecophysiology of Plants in Dry Environments. In P. D`Odorico & A. Porporato (Eds.), Dry land Ecohydrology (pp. 47-65), Dordrecht: Springer. https://doi.org/10.1007/1-4020-4260-4_4

Manivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. M. A., & Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by water deficit stress. Colloids and Surfaces B: Biointerfaces, 59(2), 141-149. https://doi.org/10.1016/j.colsurfb.2007.05.002

Ocheltree, T. W., Nippert, J. B., & Prasad, P. V. V. (2014). Stomatal responses to changes in vapor pressure deficit reflect tissue‐specific differences in hydraulic conductance. Plant, Cell & Environment, 37(1), 132-139. https://doi.org/10.1111/pce.12137

Öpik, H., Rolfe, S. A., & Willis, A. J. (2005). The Physiology of Flowering Plants. United Kingdom: Cambridge University Press.

Owade, J. O., Abong’, G., Okoth, M., & Mwang’ombe, A. W. (2019). A review of the contribution of cowpea leaves to food and nutrition security in East Africa. Food Science & Nutrition, 8(1), 36-47. https://doi.org/10.1002/fsn3.1337

Pinheiro, C., & Chaves, M. M. (2011). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869-882. https://doi.org/10.1093/jxb/erq340

Qaseem, M. F., Qureshi, R., & Shaheen, H. (2019). Effects of Pre-Anthesis Drought, Heat and Their Combination on the Growth, Yield and Physiology of diverse Wheat (Triticum aestivum L.) Genotypes Varying in Sensitivity to Heat and drought stress. Scientific Reports, 9, 6955. https://doi.org/10.1038/s41598-019-43477-z

Qasem, J. R., & Biftu, K. N. (2010). Growth analysis and responses of cowpea (Vigna Sinensis (L.) Savi Ex Hassk.) and redroot pigweed (Amaranthus retroflexus L.), grown in pure and mixed stands, to density and water stresses. The Open Horticulture Journal, 3, 21-30. https://doi.org/10.2174/1874840601003010021

Rampino, P., Pataleo, S., Gererdi, C., Mita, G., & Perrotta, C. (2006). Drought response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant, Cell & Environment, 29(12), 2143-2152. https://doi.org/10.1111/j.1365-3040.2006.01588.x

Rizhsky, L., Liang, H., & Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 130(3), 1143-1151. https://doi.org/10.1104/pp.006858

Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsisto a combination of drought and heat stress. Plant Physiology, 134(4), 1683-1696. https://doi.org/10.1104/pp.103.033431

Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J., & von Korff, M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of Experimental Botany, 64(11), 3201-3212. https://doi.org/10.1093/jxb/ert158

Rudack, K., Seddig, S., Sprenger, H., Köhl, K., Uptmoor, R., & Ordon, F. (2017). Drought stress-induced changes in starch yield and physiological traits in potato. Journal of Agronomy and Crop Science, 203(6), 494-505. https://doi.org/10.1111/jac.12224

Saini, H. S., & Westgate, M. E. (2000). Reproductive development in grain crops during drought. Advances in Agronomy, 68, 59-96. https://doi.org/10.1016/S0065-2113(08)60843-3

Sarvikas, P., Hakala, M., Patsikka, E., Tyystjarvi, T., & Tyystjarvi, E. (2006). Action spectrum of photoinhibition in leaves of wild type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana. Plant and Cell Physiology, 47, 391-400. https://doi.org/10.1093/pcp/pcj006

Shao, H. B., Chud, L. Y., Jaleelc, C. A., & Zhaoe, C. X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331(3), 215-225. https://doi.org/10.1016/j.crvi.2008.01.002

Shetty, A. A., Magadum, S., & Managanvi, K. (2013). Vegetables as Sources of antioxidants. Journal of Food and Nutritional Disorders, 2(1), 1-5. https://doi.org/10.4172/2324-9323.1000104

Sinclair, T. R., & Jamieson, P. D. (2006). Grain number, wheat yield, and bottling beer: An analysis. Field Crops Research, 98(1), 60-67. https://doi.org/10.1016/j.fcr.2005.12.006

Singh, B. B. (2004). Cowpea (Vigna unguiculata (L.) Walp.). In R. J. Singh & P. P. Jauhar (Eds.), Genetic Resources, Chromosome Engineering, and Crop Improvement (pp. 117-161) Boca Raton, USA: CRC Press. https://doi.org/10.1201/9780203489284

Singh, B. B., Ehlers, E. J. D., Sharma, B., & Freire Filho, F. R. (2002). Recent progress in cowpea breeding. In C. A. Fatokun, S. A. Tarawali, B. B. Singh, P. M. Kormawa, & M. Tamo (Eds.), Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the world cowpea conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria.

Singh, S. K., & Reddy, K. R. (2011). Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. Journal of Photochemistry and Photobiology B: Biology, 105(1), 40-50. https://doi.org/10.1016/j.jphotobiol.2011.07.001

Stancato, G. C., Mazzafera, P., & Buckeridge, M. S. (2002). Effects of light stress on the growth of the epiphytic orchid Cattleya forbesii lindl. X. Laelia tenebrosa rolfe. Brazilian Journal of Botany, 25(2), 229-235. https://doi.org/10.1590/S0100-84042002000200011

Suleiman, A. H., & Ahmed, F. E. (2010). Effect of Water Potentials on Growth and Yield of Cowpea (Vigna Unguiculata [L] Walp). Research Journal of Agriculture and Biological Sciences, 6, 401-410.

Surendar, K. K., Devi, D. D., Ravi, I., Jeyakumar, P., & Velayudham, K. (2013). Effect of Water Stress on Leaf Temperature, Transpiration Rate, Stomatal Diffusive Resistance and Yield of Banana. Plant Gene and Trait, 4(8), 43-47.

Tran, T. T. (2018). The Effect of Light Exposure on the Total Chlorophyll Content, Chl a/b Ratio, and Car/chl Ratio in the Barks of Fraxinus latifolia Seedlings. Dissertation. Portland State University. https://doi.org/10.15760/honors.583

Vurayai, R., Emongor, V., & Moseki, B. (2011) Effect of water stress imposed at different growth and development stages on morphological traits and yield of bambara groundnuts (Vigna subterranea L. Verdc). American Journal of Plant Physiology, 6(1), 17-27. https://doi.org/10.3923/ajpp.2011.17.27

Wang, Z., & Huang, B. (2004). Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Science, 44(5), 1729-1736. https://doi.org/10.2135/cropsci2004.1729

Xu, Z. Z., & Zhou, G. S. (2006). Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta, 224(5), 1080-1090. https://doi.org/10.1007/s00425-006-0281-5

Yamakawa, H., Hirose, T., Kuroda, M., & Yamaguchi, T. (2007). Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiology, 144(1), 258-277. https://doi.org/10.1104/pp.107.098665

Yang, J. C., & Zhang, J. H. (2006). Grain filling of cereals under soil drying. New Phytologist, 169(2), 223-236. https://doi.org/10.1111/j.1469-8137.2005.01597.x

Yu, Q., Zhang, Y., Liu, Y., & Shi, P. (2004). Simulation of the SC of winter wheat in response to light, temperature and CO2 changes. Annals of Botany, 93(4), 435-441. https://doi.org/10.1093/aob/mch023

Zhang, D., Yuan, S., Xu, F., Zhu, F., Yuan, M., Ye, H., Guo, H., Lv, X., Yin, Y., & Lin, H. (2016). Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis. Plant, Cell & Environment, 39(1), 12-25. https://doi.org/10.1111/pce.12438

Zhao, T. J., Sun, S., Liu, Y., Liu, J. M., Liu, Q., Yan, Y. B., & Zhou, H. M. (2006). Regulating the water deficit responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. Journal of Biological Chemistry, 281(16), 10752-10759. https://doi.org/10.1074/jbc.m510535200

Zhou, J., Wang, X., Jiao, Y., Qin, Y., Liu, X., He, K., Chen, C., Ma, L., Wang, J., Xiong, L., Zhang, Q., Fan, L., & Deng, X. W. (2007). Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Molecular Biology, 63, 591-608. https://doi.org/10.1007/s11103-006-9111-1

Zhu, X., Gong, H., Chen, G., Wang, S., & Zhang, C. (2005). Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. Journal of Arid Environments, 62(1), 1-14. https://doi.org/10.1016/j.jaridenv.2004.10.010

Published

09-11-2022

How to Cite

Adeniyi, O. I., S. A. Adejumo, M. Fofana, and F. T. Adegbehingbe. “Physiological Responses of Cowpea Simultaneously Exposed to Water Deficit Stress and Varying Light Intensities at Vegetative and Reproductive Growth Stages”. Journal of Plant Stress Physiology, vol. 8, Nov. 2022, pp. 26-43, doi:10.25081/jpsp.2022.v8.7896.

Issue

Section

Articles