Role of inorganic and organic ions in response to salt and drought stresses
DOI:
https://doi.org/10.25081/jpsp.2022.v8.7821Keywords:
Cations, anions, organic anions, drought, saltAbstract
Plants have different responses to salt and drought stresses. They transport several ions to balance osmotic potential and stomatal closure and opening. Ions including inorganic and organic cations and anions play a crucial role to alleviate abiotic stresses (salt and drought). Inorganic cations containing Na+, K+, Mg2+ and Ca2+ and inorganic anions comprising Cl-, PO42-, NO3-, SO42- have a great role in osmotic and ion hemostasis in response to salt and water stresses. Organic anions like acetate, succinate, malate, citrate and oxalate showed vital impacts on alleviating damages of drought and salt stresses that lead to higher yield in severe conditions. In order to recognize the mechanisms that increase tolerance of salt and drought stresses, this review illustrates roles of organic and inorganic anions and cations and their interactions on osmotic adjustment, stomata closure and ion hemostasis. Halophytes will be compared with glycophytes as the proper models to find out differences in stress tolerance mechanisms.
Downloads
References
Abbas, M., Abdel-Lattif, H., & Shahba, M. (2021). Ameliorative Effects of Calcium Sprays on Yield and Grain Nutritional Composition of Maize (Zea mays L.) Cultivars under Drought Stress. Agriculture, 11(4), 285. https://doi.org/10.3390/agriculture11040285
Ache, P., Bauer, H., Kollist, H., Al‐Rasheid, K. A. S., Lautner, S., Hartung, W., & Hedrich, R. (2010). Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non‐invasive pressure probe measurements. The Plant Journal, 62(6), 1072-1082. https://doi.org/10.1111/j.1365-313X.2010.04213.x
Aoki, N., Ohnishi, J.-i., & Kanai, R. (1992). Two different mechanisms for transport of pyruvate into mesophyll chloroplasts of C4 plants—a comparative study. Plant and Cell Physiology, 33(6), 805-809. https://doi.org/10.1093/oxfordjournals.pcp.a078321
Bhardwaj, S., & Kumar, P. (2020). Salinity stress, its physiological response and mitigating effects of microbial bio inoculants and organic compounds. Journal of Pharmacognosy and Phytochemistry, 9(4), 1397-1130.
Bi, J., Hou, D., Zhang, X., Tan, J., Bi, Q., Zhang, K., Liu, Y., Wang, F., Zhang, A., Chen, L., Liu, G., Liu, Z., Yu, X., & Luo, L. (2021). A novel water-saving and drought-resistance rice variety promotes phosphorus absorption through root secreting organic acid compounds to stabilize yield under water-saving condition. Journal of Cleaner Production, 315, 127992. https://doi.org/10.1016/j.jclepro.2021.127992
Bindraban, P. S., Dimkpa, C. O., & Pandey, R. (2020). Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils, 56, 299-317. https://doi.org/10.1007/s00374-019-01430-2
Bose, J., Munns, R., Shabala, S., Gilliham, M., Pogson, B., & Tyerman, S. D. (2017). Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. Journal of Experimental Botany, 68(12), 3129-3143. https://doi.org/10.1093/jxb/erx142
Canarini, A., Kaiser, C., Merchant, A., Richter, A., & Wanek, W. (2019). Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science, 157. https://doi.org/10.3389/fpls.2019.00157
Chaudhry, U. K., Gökçe, Z. N. Ö., & Gökçe, A. F. (2022). Salt Stress and Plant Molecular Responses. In J. N. Kimatu (Eds.), Plant Defense Mechanisms. https://doi.org/10.5772/intechopen.101513
Chen, H., Chen, M., Li, D., Mao, Q., Zhang, W., & Mo, J. (2018). Responses of soil phosphorus availability to nitrogen addition in a legume and a non-legume plantation. Geoderma, 322, 12-18. https://doi.org/10.1016/j.geoderma.2018.02.017
Chen, W., Cui, P., Sun, H., Guo, W., Yang, C., Jin, H., Fang, B., & Shi, D. (2009). Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). Industrial Crops and Products, 30(3), 351-358. https://doi.org/10.1016/j.indcrop.2009.06.007
Chen, Z., Newman, I., Zhou, M., Mendham, N., Zhang, G., & Shabala, S. (2005). Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant, Cell & Environment, 28(10), 1230-1246. https://doi.org/10.1111/j.1365-3040.2005.01364.x
Deng, Q., Hui, D., Dennis, S., & Reddy, K. C. (2017). Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta‐analysis. Global Ecology and Biogeography, 26(6), 713-728. https://doi.org/10.1111/geb.12576
Dey, G., Banerjee, P., Sharma, R. K., Maity, J. P., Etesami, H., Shaw, A. K., Huang, Y.-H., Huang, H.-B., & Chen, C.-Y. (2021). Management of Phosphorus in Salinity-Stressed Agriculture for Sustainable Crop Production by Salt-Tolerant Phosphate-Solubilizing Bacteria—A Review. Agronomy, 11(8), 1552. https://doi.org/10.3390/agronomy11081552
Fan, S., Wu, H., Gong, H., & Guo, J. (2022). The salicylic acid mediates selenium-induced tolerance to drought stress in tomato plants. Scientia horticulturae, 300, 111092. https://doi.org/10.1016/j.scienta.2022.111092
Fernie, A. R., & Martinoia, E. (2009). Malate. Jack of all trades or master of a few? Phytochemistry, 70(7), 828-832. https://doi.org/10.1016/j.phytochem.2009.04.023
Franco-Navarro, J. D., Diaz-Rueda, P., Rivero-Nunez, C. M., Brumos, J., Rubio-Casal, A. E., Cires, A. de, Colmenero-Flores, J. M., & Rosales, M. A. (2021). Chloride nutrition improves drought resistance by enhancing water deficit avoidance and tolerance mechanisms. Journal of Experimental Botany, 72(14), 5246-5261. https://doi.org/10.1093/jxb/erab143
Fu, H., Yu, H., Li, T., & Wu, Y. (2019). Effect of cadmium stress on inorganic and organic components in xylem sap of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicology and Environmental Safety, 168, 330-337. https://doi.org/10.1016/j.ecoenv.2018.10.023
Ghaffari, A., Gharechahi, J., Nakhoda, B., & Salekdeh, G. H. (2014). Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. Journal of Plant Physiology, 171(1), 31-44. https://doi.org/10.1016/j.jplph.2013.07.014
Gianfreda, L. (2015). Enzymes of importance to rhizosphere processes. Journal of Soil Science and Plant Nutrition, 15(2), 283-306. https://doi.org/10.4067/S0718-95162015005000022
Gilliham, M., & Tester, M. (2005). The regulation of anion loading to the maize root xylem. Plant Physiology, 137(3), 819-828. https://doi.org/10.1104/pp.104.054056
Guo, B., Irigoyen, S., Fowler, T. B., & Versaw, W. K. (2008). Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues. Plant Signaling & Behavior, 3(10), 784-790. https://doi.org/10.4161/psb.3.10.6666
Guo, Y., Qiu, Q.-S., Quintero, F. J., Pardo, J. M., Ohta, M., Zhang, C., Schumaker, K. S., & Zhu, J.-K. (2004). Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell, 16(2), 435-449. https://doi.org/10.1105/tpc.019174
Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
Hedley, M. J., Stewart, J. W. B., & Chauhan, B. S. C. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46(5), 970-976. https://doi.org/10.2136/sssaj1982.03615995004600050017x
Hedrich, R., & Geiger, D. (2017). Biology of SLAC 1‐type anion channels–from nutrient uptake to stomatal closure. New Phytologist, 216(1), 46-61. https://doi.org/10.1111/nph.14685
Hedrich, R., & Shabala, S. (2018). Stomata in a saline world. Current Opinion in Plant Biology, 46, 87-95. https://doi.org/10.1016/j.pbi.2018.07.015
Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237(2), 173-195. https://doi.org/10.1023/A:1013351617532
Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. M. (2009). Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant and Soil, 321, 117-152. https://doi.org/10.1007/s11104-008-9885-9
Holford, I. C. R. (1997). Soil phosphorus: its measurement, and its uptake by plants. Australian Journal of Soil Research, 35(2), 227-240. https://doi.org/10.1071/S96047
Hosseini, S. A., Rethore, E., Pluchon, S., Ali, N., Billiot, B., & Yvin, J.-C. (2019). Calcium Application Enhances Drought Stress Tolerance in Sugar Beet and Promotes Plant Biomass and Beetroot Sucrose Concentration. International Journal of Molecular Sciences, 20(15), 3777. https://doi.org/10.3390/ijms20153777
Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science, 168(4), 541-549. https://doi.org/10.1002/jpln.200420516
Huang, Q., Farooq, M. A., Hannan, F., Chen, W., Ayyaz, A., Zhang, K., Zohu, W., & Islam, F. (2022). Endogenous nitric oxide contributes to chloride and sulphate salinity tolerance by modulation of ion transporter expression and reestablishment of redox balance in Brassica napus cultivars. Environmental and Experimental Botany, 194, 104734. https://doi.org/10.1016/j.envexpbot.2021.104734
Huguenin-Elie, O., Kirk, G. J. D., & Frossard, E. (2009). The effects of water regime on phosphorus responses of rainfed lowland rice cultivars. Annals of botany, 103(2), 211-220. https://doi.org/10.1093/aob/mcn199
Hussein, M., Embiale, A., Husen, A., Aref, I. M., & Iqbal, M. (2017). Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (Vicia faba) cultivars. Pakistan Journal of Botany, 49(3), 867-877.
Irakoze, W., Prodjinoto, H., Nijimbere, S., Rufyikiri, G., & Lutts, S. (2020). NaCl and Na2SO4 salinities have different impact on photosynthesis and yield-related parameters in rice (Oryza sativa L.). Agronomy, 10(6), 864. https://doi.org/10.3390/agronomy10060864
Jiang, C.-C., Fang, Z.-Z., Zhou, D.-R., Pan, S.-L., & Ye, X.-F. (2019). Changes in secondary metabolites, organic acids and soluble sugars during the development of plum fruit cv.‘Furongli’(Prunus salicina Lindl). Journal of the Science of Food and Agriculture, 99(3), 1010-1019. https://doi.org/10.1002/jsfa.9265
Jones, R. G. W., & Storey, R. (1978). Salt stress and comparative physiology in the Gramineae, 2. Glycinebetaine and proline accumulation in two salt-and water-stressed barley cultivars. Australian Journal of Plant Physiology, 5(6), 817-829. https://doi.org/10.1071/PP9780817
Kameli, A., & Lösel, D. M. (1995). Contribution of carbohydrates and other solutes to osmotic adjustment in wheat leaves under water stress. Journal of Plant Physiology, 145(3), 363-366. https://doi.org/10.1016/S0176-1617(11)81903-6
Khurana, N., & Chatterjee, C. (2001). Influence of variable zinc on yield, oil content, and physiology of sunflower. Communications in Soil Science and Plant Analysis, 32(19-20), 3023-3030. https://doi.org/10.1081/CSS-120001104
Latef, A. A. H. A., Srivastava, A. K., Saber, H., Alwaleed, E. A., & Tran, L.-S. P. (2017). Sargassum muticum and Jania rubens regulate amino acid metabolism to improve growth and alleviate salinity in chickpea. Scientific Reports, 7(1), 1-12. https://doi.org/10.1038/s41598-017-07692-w
Levizou, E., Drilias, P., & Kyparissi, A. (2004). Exceptional photosynthetic performance of Capparis spinosa L. under adverse conditions of Mediterranean summer. Photosynthetica, 42, 229-235. https://doi.org/10.1023/B:PHOT.0000040594.85407.f4
Li, Z., Yu, J., Peng, Y., & Huang, B. (2017). Metabolic pathways regulated by abscisic acid, salicylic acid and γ‐aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Physiologia Plantarum, 159(1), 42-58. https://doi.org/10.1111/ppl.12483
Liu, E., Yan, C., Mei, X., He, W., Bing, S. H., Ding, L., Liu, Q., Liu, S., & Fan, T. (2010). Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma, 158(3-4), 173-180. https://doi.org/10.1016/j.geoderma.2010.04.029
Liu, K.-h., Niu, Y., Konishi, M., Wu, Y., Du, H., Chung, H. S., Li, L., Boudsocq, M., McCormack, M., Maekawa, S., Ishida, T., Zhang, C., Shokat, K., Yanagisawa, S., & Sheen, J. (2017). Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks. Nature, 545, 311-316. https://doi.org/10.1038/nature22077
Ma, B., Chen, J., Zheng, H., Fang, T., Ogutu, C., Li, S., Han, Y., & Wu, B. (2015). Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chemistry, 172, 86-91. https://doi.org/10.1016/j.foodchem.2014.09.032
Ma, L., Zhang, H., Sun, L., Jiao, Y., Zhang, G., Miao, C., & Hao, F. (2012). NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. Journal of Experimental Botany, 63(1), 305-317. https://doi.org/10.1093/jxb/err280
Ma, Y., Wang, X. P., Zhang, S. F., Shi, D. C., & Sheng, L. X. (2016). Effects of salt and alkali stress on growth, accumulation of oxalic acid, and activity of oxalic acid-metabolizing enzymes in Kochia sieversiana. Biologia plantarum, 60, 774-782. https://doi.org/10.1007/s10535-016-0650-2
Manishankar, P., Wang, N., Koster, P., Alatar, A. A., & Kudla, J. (2018). Calcium Signaling during Salt Stress and in the Regulation of Ion Homeostasis. Journal of Experimental Botany, 69(17), 4215-4226. https://doi.org/10.1093/jxb/ery201
Martínez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.-K., Pardo, J. M., & Quintero, F. J. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 143(2), 1001-1012. https://doi.org/10.1104/pp.106.092635
Miyaji, T., Kuromori, T., Takeuchi, Y., Yamaji, N., Yokosho, K., Shimazawa, A., Sugimoto, E., Omote, H., Ma, J. F., Shinozaki, K., & Moriyama, Y. (2015). AtPHT4; 4 is a chloroplast-localized ascorbate transporter in Arabidopsis. Nature Communications, 6, 5928. https://doi.org/10.1038/ncomms6928
Mousavi, S. R. (2011). Zinc in crop production and interaction with phosphorus. Australian Journal of Basic and Applied Sciences, 5(9), 1503-1509.
Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2), 239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Nannipieri, P., Giagnoni, L., Landi, L., & Renella, G. (2011). Role of phosphatase enzymes in soil. In E. Bünemann, A. Oberson & E. Frossard (Eds.), Phosphorus in Action (Vol. 26, pp. 215-243) Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-15271-9_9
Negi, J., Matsuda, O., Nagasawa, T., Oba, Y., Takahashi, H., Kawai-Yamada, M., Uchimiya, H., Hashimoto, M., & Iba, K. (2008). CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature, 452, 483-486. https://doi.org/10.1038/nature06720
Oburger, E., Jones, D. L., & Wenzel, W. W. (2011). Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant and Soil, 341, 363-382. https://doi.org/10.1007/s11104-010-0650-5
Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832-847. https://doi.org/10.1071/FP12389
Pazirandeh, M. S., Hasanloo, T., Niknam, V., Shahbazi, M., Mabood, H. E., & Ghaffari, A. (2013). Effects of drought and methyl jasmonate on antioxidant activities of selected barley genotypes. Journal of Agrobiology, 30(2), 71-82.
Pei, Z. M., Murata, Y., Benning, G., Thomine, S., Klüsener, B., Allen, G. J., Grill, E., & Schroeder, J. I. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 406, 731-734. https://doi.org/10.1038/35021067
Penn, C. J., & Camberato, J. J. (2019). A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 9(6), 120. https://doi.org/10.3390/agriculture9060120
Perelman, A., Imas, P., & Bansal, S. (2022). Potassium Role in Plants’ Response to Abiotic Stresses. In N. Iqbal & S. Umar (Eds.), Role of Potassium in Abiotic Stress (pp. 15-39) Singapore: Springer. https://doi.org/10.1007/978-981-16-4461-0_2
Prodjinoto, H., Irakoze, W., Gandonou, C., Lepoint, G., & Lutts, S. (2021). Discriminating the impact of Na+ and Cl− in the deleterious effects of salt stress on the African rice species (Oryza glaberrima Steud.). Plant Growth Regulation, 94, 201-219. https://doi.org/10.1007/s10725-021-00709-5
Quintero, F. J., Martinez-Atienza, J., Villalta, I., Jiang, X., Kim, W.-Y., Ali, Z., Fujii, H., Mendoza, I., Yun, D.-J., Zhu, J.-K., & Pardo, J. M. (2011). Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences, 108(6), 2611-2616. https://doi.org/10.1073/pnas.1018921108
Quintero, F. J., Ohta, M., Shi, H., Zhu, J.-K., & Pardo, J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences, 99(13), 9061-9066. https://doi.org/10.1073/pnas.132092099
Raghothama, K. G. (2005). Phosphorus and plant nutrition: an overview. Phosphorus: Agriculture and the Environment, 46, 353-378. https://doi.org/10.2134/agronmonogr46.c11
Rao, X., & Dixon, R. A. (2019). Corrigendum: The Differences between NAD-ME and NADP-ME Subtypes of C4 Photosynthesis: More than Decarboxylating Enzymes. Frontiers in Plant Science, 10, 1525. https://doi.org/10.3389/fpls.2016.01525
Reddy, A. S. N., Ali, G. S., Celesnik, H., & Day, I. S. (2011). Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. The Plant Cell, 23(6), 2010-2032. https://doi.org/10.1105/tpc.111.084988
Reich, M., Aghajanzadeh, T., Helm, J., Parmar, S., Hawkesford, M. J., & Kok, L. J. D. (2017). Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant and Soil, 411(1), 319-332. https://doi.org/10.1007/s11104-016-3026-7
Richardson, A. E., Lynch, J. P., Ryan, P. R., Delhaize, E., Smith, F. A., Smith, S. E., Harvey, P. R., Ryan, M. H., Veneklaas, E. J., Lambers, H., Oberson, A., Culvenor, R. A., Simpson, R. J. (2011). Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 349, 121-156. https://doi.org/10.1007/s11104-011-0950-4
Sah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7, 571. https://doi.org/10.3389/fpls.2016.00571
Santos, M. G. dos, Ribeiro, R. V., Oliveira, R. F. de, & Pimentel, C. (2004). Gas exchange and yield response to foliar phosphorus application in Phaseolus vulgaris L. under drought. Brazilian Journal of Plant Physiology, 16(3), 171-179.
Sayed, S. E., Hellal, F., & Abdel-Kader, H. H. (2021). Growth and Yield Production of Canola as Affected by Organic and Mineral Fertilizers Application under Drought Stress Conditions. Annual Research & Review in Biology, 36(1), 1-13. https://doi.org/10.9734/arrb/2021/v36i130328
Schroeder, J. I., Delhaize, E., Frommer, W. B., Guerinot, M. L., Harrison, M. J., Herrera-Estrella, L., Horie, T., Kochian, L.V., Munns, R., Nishizawa, N. K., Tsay, Y.-F., Sanders, D. (2013). Using membrane transporters to improve crops for sustainable food production. Nature, 497, 60-66. https://doi.org/10.1038/nature11909
Shabala, S., & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151(3), 257-279. https://doi.org/10.1111/ppl.12165
Shabala, S., & Shabala, L. (2011). Ion transport and osmotic adjustment in plants and bacteria. Biomolecular Concepts, 2(5), 407-419. https://doi.org/10.1515/bmc.2011.032
Shane, M. W., McCully, M. E., & Lambers, H. (2004). Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). Journal of Experimental Botany, 55(399), 1033-1044. https://doi.org/10.1093/jxb/erh111
Silva, E. N. da, Silveira, J. A. G., Fernandes, C. R. R., Dutra, A. T. B., & Aragao, R. M. de. (2009). Ion uptake and growth of pinhão-manso under different salinity levels. Revista Ciência Agronômica, 40(2), 240-246.
Silva, E. N., Ferreira-Silva, S. L., Viégas, R. A., & Silveira, J. A. G. (2010). The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants. Environmental and Experimental Botany, 69(3), 279-285. https://doi.org/10.1016/j.envexpbot.2010.05.001
Tarchoune, I., Sgherri, C., Izzo, R., Lachaal, M., Ouerghi, Z., & Navari-Izzo, F. (2010). Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiology and Biochemistry, 48(9), 772-777. https://doi.org/10.1016/j.plaphy.2010.05.006
Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & McDonald, G. K. (2011). Additive effects of Na+ and Cl–ions on barley growth under salinity stress. Journal of Experimental Botany, 62(6), 2189-2203. https://doi.org/10.1093/jxb/erq422
Tavakkoli, E., Rengasamy, P., & McDonald, G. K. (2010a). High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany, 61(15), 4449-4459. https://doi.org/10.1093/jxb/erq251
Tavakkoli, E., Rengasamy, P., & McDonald, G. K. (2010b). The response of barley to salinity stress differs between hydroponic and soil systems. Functional Plant Biology, 37(7), 621-633. https://doi.org/10.1071/fp09202
Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5), 503-527. https://doi.org/10.1093/aob/mcg058
Touhami, D., McDowell, R. W., & Condron, L. M. (2020). Role of Organic Anions and Phosphatase Enzymes in Phosphorus Acquisition in the Rhizospheres of Legumes and Grasses Grown in a Low Phosphorus Pasture Soil. Plants (Basel), 9(9), 1185. https://doi.org/10.3390/plants9091185
Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications, 20(1), 5-15. https://doi.org/10.1890/08-0127.1
Walpola, B. C., & Yoon, M.-H. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African Journal of Microbiology Research, 6(37), 6600-6605. https://doi.org/10.5897/AJMR12.889
Wang, D., Hao, Y., & Wang, J. (2018). Impact of climate change on China’s rice production—an empirical estimation based on panel data (1979–2011) from China’s main rice-producing areas. The Singapore Economic Review, 63(3), 535-553. https://doi.org/10.1142/S0217590817400240
Wang, L., Xu, J.-Y., Jia, W., Chen, Z., & Xu, Z.-C. (2020). Chloride salinity in a chloride-sensitive plant: Focusing on photosynthesis, hormone synthesis and transduction in tobacco. Plant Physiology and Biochemistry, 153, 119-130. https://doi.org/10.1016/j.plaphy.2020.05.021
Wang, Y., & Lambers, H. (2019). Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives. Plant and Soil, 447, 135-156. https://doi.org/10.1007/s11104-019-03972-8
Wang, Y., Dindas, J., Rienmüller, F., Krebs, M., Waadt, R., Schumacher, K., Wu, W.-H., Hedrich, R., & Roelfsema, M. R. G. (2015). Cytosolic Ca2+ signals enhance the vacuolar ion conductivity of bulging Arabidopsis root hair cells. Molecular plant, 8(11), 1665-1674. https://doi.org/10.1016/j.molp.2015.07.009
Wang, Y., Liu, F., & Jensen, C. R. (2012). Comparative effects of partial root-zone irrigation and deficit irrigation on phosphorus uptake in tomato plants. The Journal of Horticultural Science and Biotechnology, 87(6), 600-604. https://doi.org/10.1080/14620316.2012.11512918
Wang, Y., Whalen, J. K., Chen, X., Cao, Y., Huang, B., Lu, C., & Shi, Y. (2016). Mechanisms for altering phosphorus sorption characteristics induced by low-molecular-weight organic acids. Canadian Journal of Soil Science, 96(3), 289-298. https://doi.org/10.1139/cjss-2015-0068
Watkins, J. M., Chapman, J. M., & Muday, G. K. (2017). Abscisic acid-induced reactive oxygen species are modulated by flavonols to control stomata aperture. Plant Physiology, 175(4), 1807-1825. https://doi.org/10.1104/pp.17.01010
Xu, J., Li, H.-D., Chen, L.-Q., Wang, Y., Liu, L.-L., He, L., & Wu, W.-H. (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 125(7), 1347-1360. https://doi.org/10.1016/j.cell.2006.06.011
Yadavi, A., Aboueshaghi, R. S, Dehnavi, M. M., & Balouchi, H. (2014). Effect of micronutrients foliar application on grain qualitative characteristics and some physiological traits of bean (Phaseolus vulgaris L.) under drought stress. Indian Journal of Fundamental and Applied Life Sciences, 4(4), 124-131.
Yang, A., Akhtar, S. S., Amjad, M., Iqbal, S., & Jacobsen, S. -E. (2016). Growth and Physiological Responses of Quinoa to Drought and Temperature Stress. Journal of Agronomy and Crop Science, 202(6), 445-453. https://doi.org/10.1111/jac.12167
Yang, C., Chong, J., Li, C., Kim, C., Shi, D., & Wang, D. (2007). Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil, 294(1), 263-276. https://doi.org/10.1007/s11104-007-9251-3
Yang, C., Shi, D., & Wang, D. (2008). Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 56, 179. https://doi.org/10.1007/s10725-008-9299-y
Yang, J., & Yen, H. E. (2002). Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiology, 130(2), 1032-1042. https://doi.org/10.1104/pp.004325
Yang, K., Zhu, J., Gu, J., Yu, L., & Wang, Z. (2015). Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation. Annals of Forest Science, 72, 435-442. https://doi.org/10.1007/s13595-014-0444-7
Yang, X., & Post, W. M. (2011). Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences, 8(10), 2907-2916. https://doi.org/10.5194/bg-8-2907-2011
Yeo, A. R. (1983). Salinity resistance: physiologies and prices. Physiol Plant, 58(2), 214-222. https://doi.org/10.1111/j.1399-3054.1983.tb04172.x
Zang, H., Blagodatskaya, E., Wang, J., Xu, X., & Kuzyakov, Y. (2017). Nitrogen fertilization increases rhizodeposit incorporation into microbial biomass and reduces soil organic matter losses. Biology and Fertility of Soils, 53, 419-429. https://doi.org/10.1007/s00374-017-1194-0
Zhang, X., Miao, Y. C., An, G. Y., Zhou, Y., Shangguan, Z. P., Gao, J. F., & Song, C. P. (2001). K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells. Cell Research, 11(3), 195-202. https://doi.org/10.1038/sj.cr.7290086
Zhang, Y., & Fernie, A. R. (2018). On the role of the tricarboxylic acid cycle in plant productivity. Jounal of Integrative Plant Biology, 60(12), 1199-1216. https://doi.org/10.1111/jipb.12690
Zhao, C., Haigh, A. M., Holford, P., & Chen, Z. -H. (2018). Roles of Chloroplast Retrograde Signals and Ion Transport in Plant Drought Tolerance. International Journal of Molecular Sciences, 19(4), 963. https://doi.org/10.3390/ijms19040963
Zhao, Y., Ai, X., Wang, M., Xiao, L., & Xia, G. (2016). A putative pyruvate transporter TaBASS2 positively regulates salinity tolerance in wheat via modulation of ABI4 expression. BMC Plant Biology, 16, 109. https://doi.org/10.1186/s12870-016-0795-3
Zhou, Y., Zhu, H., & Yao, Q. (2018). Contrasting P acquisition strategies of the bacterial communities associated with legume and grass in subtropical orchard soil. Environmental Microbiology Reports, 10(3), 310-319. https://doi.org/10.1111/1758-2229.12641
Zhu, F., Qu, L., Hong, X., & Sun, X. (2011). Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evidence-Based Complementary and Alternative Medicine, 2011, 615032. https://doi.org/10.1155/2011/615032
Zhu, J.-K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247-273. https://doi.org/10.1146/annurev.arplant.53.091401.143329
Zhu, J.-K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6(5), 441-445. https://doi.org/10.1016/s1369-5266(03)00085-2
Zou, C.-L., Wang, Y.-B., Wang, B., Liu, D., Liu, L., & Li, C.-F. (2021). Effects of alkali stress on dry matter accumulation, root morphology, ion balance, free polyamines, and organic acids of sugar beet. Acta Physiologiae Plantarum, 43, 13. https://doi.org/10.1007/s11738-020-03194-x
Published
How to Cite
Issue
Section
Copyright (c) 2022 Journal of Plant Stress Physiology
This work is licensed under a Creative Commons Attribution 4.0 International License.