Effects of watering regime on the morphological, physiological and functional traits of seedlings of cacao provenances under screen house conditions

Authors

  • Laureta Olayemi Plant Physiology & Ecology Group, Department of Crop, Soil & Pest Management, Federal University of Technology, Akure, Nigeria
  • Samuel Agele Plant Physiology & Ecology Group, Department of Crop, Soil & Pest Management, Federal University of Technology, Akure, Nigeria
  • Adejobi Adejobi Plant Physiology & Ecology Group, Department of Crop, Soil & Pest Management, Federal University of Technology, Akure, Nigeria
  • Peter Aiyelari Plant Physiology & Ecology Group, Department of Crop, Soil & Pest Management, Federal University of Technology, Akure, Nigeria

DOI:

https://doi.org/10.25081/jpsp.2022.v8.7348

Keywords:

Theobroma, provenances, root zone, moisture, growth, physiology, biochemistry, tolerance

Abstract

In the present study, morphological and physiological responses of cocoa provenances to watering regimes under screen house conditions and the implications of the measured variables as drought tolerance strategy in Theobroma was discussed. A 4 by 3 factorial scheme involving four cacao provenances and watering regimes (well watering at full field capacity, 60 and 40% field capacity: 1.5, 0.9 and 0.6 L/plant at each watering event) the cocoa genotypes evaluated are PA 150 Series (the elite varieties), F3 Amazon and Amelonado. Observations were made on the morphological and physiological traits of seedlings of the cacao genotypes affected by watering regimes. The measured variables were deployed to rank the drought performance of cacao genotypes following nursery desiccation studies. Data on root and shoot biomass, water use, stomatal conductance, proline, water soluble carbohydrate and leaf chlorophyll concentrations of cacao seedlings were collected. The results showed that root zone moisture status affected the morphological and physiological characteristics of cacao provenances. Differences were obtained in root and shoot biomass, water use, the densities of stomatal and its conductance of gases, and the concentrations of leaf chlorophyll, and shoot and leaf proline and water soluble carbohydrates among the watering regimes imposed. Cacao provenances evaluated also differed in their responses to watering regimes and in morphological and physiological characters. The imposed root zone moisture scenarios elicited differences in the responses of cacao provenances evaluated. Most of the measured morphological and physiological variables were driven by root zone moisture status among cacao provenances, the measured traits appeared to have played important roles as root zone moisture deficit stress tolerance mechanisms in cacao. Seedlings of cocoa provenances had better vigour of growth when grown under 100 and 60% field capacity watering compared with 40% FC. Adequacy of soil moisture promotes growth and physiological functions in the seedlings of cacao provenances tested. The measured morpho-physiological variables were statistically superior under well watered situations (100% FC) compared with the 40% FC. The results confirmed that cocoa seedlings cannot withstand soil moisture deficit stress as was obtained for seedlings that were watered with 40% FC. It is recommended that watering cacao seedlings at full field capacity (FC) and at 70% FC (mild root zone moisture stress) will ensure the production of vigorous seedlings of cacao in the nursery.

Downloads

Download data is not yet available.

References

Acheampong, K. O., Hadley, P., & Daymond, A. (2012). Photosynthetic activity and early growth of four cacao genotypes as influenced by different shade regimes under West African dry and wet season conditions. Experimental Agriculture, 49(1), 31-42. https://doi.org/10.1017/S0014479712001007

Agele, S., Aiyelari, P., Adegboye, J., & Oyeneyin, E. (2018). Effects of watering regime and mycorrhizal inoculation on the growth and drought tolerant traits of seedlings of cocoa (Theobroma cacao L.) varieties. International Journal of Horticulture, 8(13). https://doi.org/10.5376/ijh.2018.08.0013

Agele, S., Famuwagun, B., & Ogunleye, A. (2016). Effects of shade on microclimate, canopy characteristics and light integrals in dry season field-grown cocoa (Theobroma cacao L.) seedlings. Journal of Horticulture, 11(1), 47-56.

Agele, S., Iremiren, G. O., & Ojeniyi, S. O. (2011). Evapotranspiration, water use efficiency and yield of rainfed and irrigated tomato in the dry season in a humid rainforest zone of Nigeria. International Journal of Biology & Agricultural Sciences, 13, 469-476.

Almeida, A.-A. F. de, Brito, R. C. T., Aguilar, M. A. G., & Valle, P. R. (2002). Water relations aspects of Theobroma cacao L. clones. Agrotropical, 14(2), 35-44.

Almeida, J. De, Herrera, A., & Tezara, W. (2018). Phenotypic plasticity to photon flux density of physiological, anatomical and growth traits in a modern Criollo cocoa clone. Physiologia Plantarum, 166(3), 821–832. https://doi.org/10.1111/ppl.12840

Almeida, J. De, Tezara, W., & Herrera, A. (2016). Physiological responses to drought and experimental water deficit and waterlogging of four clones of cocoa (Theobroma cacao L.) selected for cultivation in Venezuela. Agricultural Water Management, 171, 80-88. https://doi.org/10.1016/j.agwat.2016.03.012

Alvim, P. de T. (1977). Cacao. In P. de T. Alvim & T. t. Kozlowski (Eds.), Ecophysiology of Tropical Crops (pp. 279-313) New York: Academic Press. https://doi.org/10.1016/C2013-0-07134-4

Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3-16. https://doi.org/10.1016/j.plantsci.2003.10.024

Berninger, F., Mäkela, A., & Hari, P. (1996). Optimal control of gas exchange during drought: empirical evidence. Annals of Botany, 77(5), 469 - 476. https://doi.org/10.1006/anbo.1996.0057

Boyer, J. S., James, R. A., Munns, R., Condon, T. A., & Passioura, J. B. (2008). Osmotic adjustment leads to anomalously low estimates of relative water content in wheat and barley. Functional Plant Biology, 35(11), 1172-1182. https://doi.org/10.1071/FP08157

Bray, E. A. (1997). Plant responses to water deficit. Trends in Plant Science, 2(2), 48-54. https://doi.org/10.1016/S1360-1385(97)82562-9

Budak, H., Hussain, B., Khan, Z., Ozturk, N. Z., & Ullah, N. (2015). From Genetics to Functional Genomics: Improvement in Drought Signaling and Tolerance in Wheat. Frontiers in Plant Science, 6, 1012. https://doi.org/10.3389/fpls.2015.01012

Chmielewska, K., Rodziewicz, P., Swarcewicz, B., Sawikowska, A, Krajewski, P., Marczak, L., Ciesiołka, D., Kuczyńska, A., Mikołajczak, K., Ogrodowicz, P., Krystkowiak, K., Surma, M., Adamski, T., Bednarek, P., & Stobiecki, M. (2016). Analysis of Drought-Induced Proteomic and Metabolomic Changes in Barley (Hordeum vulgare L.) Leaves and Roots Unravels Some Aspects of Biochemical Mechanisms Involved in Drought Tolerance. Frontiers in Plant Science, 7, 1108. https://doi.org/10.3389/fpls.2016.01108

Cramer, G. R., Ergül, A., Grimplet, J., Tillett, R. L., Tattersall, E. A. R., Bohlman, M. C., Vincent, D., Sonderegger, J., Evans, J., Osborne, C., Quilici, D., Schlauch, K. A., Schooley, D. A., & Cushman, J. A. (2007). Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics, 7, 111-134. https://doi.org/10.1007/s10142-006-0039-y

CRIN. (2010). Annual Reports. Cocoa Research Institute of Nigeria, Ibadan.

Cuevas, E., Baeza, P., & Lissarrague, J. R. (2006). Variation in stomatal behaviour and gas exchange between mid-morning and mid-afternoon of north-south oriented grapevines (Vitis vinifera L. cv. Tempranillo) at different levels of soil water availability. Scientia Horticulturae, 108(2), 173-180. https://doi.org/10.1016/j.scienta.2006.01.027

Daymond, A. J., & Hadley, P. (2008). Differential effects of temperature on fruit development and bean quality of contrasting genotypes of cacao (Theobroma cacao). Annals of Applied Biology, 153(2), 175-185. https://doi.org/10.1111/j.1744-7348.2008.00246.x

Famuwagun, I. B., Agele, S. O., & Aiyelari, O. P. (2017). Shade effects on growth and development of cacao following two years of continuous dry season irrigation. International Journal of Fruit Science, 18(7), 153-176. https://doi.org/10.1080/15538362.2017.1416326

Garcia-Sanchez, F., Syvertsen, J. P., Gimeno, V., Botia, P., & Perez-Perez, J. G. (2007). Responses to flooding and drought stress by two citrus rootstock with different water-use efficiency. Physiologia Plantarum, 130(4), 532-542. https://doi.org/10.1111/j.1399-3054.2007.00925.x

Glenn, D. M., Kim, S.-H., Ramirez-Villegas, J., & Laderach, P. (2014). Response of perennial Horticultural crops to climate change. In J. Janick (Eds.), Horticultural Reviews (Vol. 41, pp. 47-130) New York, United States: Wiley‐Blackwell.

Haeberle, K. H., Agele, S. O., Matyssek, R., & Hennlich, M. (2016). Aspects of Water Relations and Gas Exchange of Katsura and Tilia Seedlings Subjected to Wet-Dry Cycles: Indication of Strategies for Whole Plant Drought Tolerance. International Journal of Soil & Plant Science, 10(2), 1-13.

Herbinger, K., Tausz, M., Wonisch, A., Soja, G., Sorger, A., & Grill, D. (2002). Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiology and Biochemistry, 40(6-8), 691-696. https://doi.org/10.1016/S0981-9428(02)01410-9

Hoekstra, F. A., Haigh, A. M., Tetteroo, F. A. A., & Roekel, T. van. (1994). Changes in soluble sugars in relation to desiccation tolerance in cauliflower seeds. Seed Science Research, 4(2), 143-147. https://doi.org/10.1017/S0960258500002142

Kantar, M., Lucas, S. J., & Budak, H. (2011). Drought Stress: Molecular Genetics and Genomics Approaches. In I. Turkan (Eds.), Advances in Botanical Research (Vol.57, pp. 445-493) New York: Academic Press. https://doi.org/10.1016/B978-0-12-387692-8.00013-8

Keller, F., & Ludlow, M. M. (1993). Carbohydrate metabolism in drought-stressed leaves of pigeon pea. Journal of Experimental Botany, 44(8), 1351-1359. https://doi.org/10.1093/jxb/44.8.135

Khan, S. H., Khan, A., Litaf, U., Shah, A. S., Khan, M. A., Bilal, M., & Ali, M. U. (2015). Effect of Drought Stress on Tomato cv. Bombino. Journal of Food Processing & Technology, 6(7), 465. https://doi.org/10.4172/2157-7110.1000465

Khayatnezha, M., & Gholamin, R. (2012).The effect of drought stress on leaf chlorophyll content and stress resistance in maize cultivars (Zea mays). African Journal of Microbiology Research, 6(12), 2844-2848. https://doi.org/10.5897/AJMR11.964

Kpyoarissis, A., Petropoulou, Y., & Manetas, Y. (1995). Summer survival of leaves in a soft-leaved shrub (Phlomis fruticose L., Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. Journal of Experimental Botany, 46(12), 1825-1831. https://doi.org/10.1093/jxb/46.12.1825

Li, X., & Liu, F. (2016). Drought stress Memory and Drought stress tolerance in plants: biochemical and molecular basis. In M. A. Hossain, S. H. Wani, S. Bhattacharjee, D. J. Burritt & L.-S. P. Tran (Eds.), Drought Stress Tolerance in Plants (Vol. 1, pp. 17-44) Switzerland: Springer. https://doi.org/10.1007/978-3-319-28899-4_2

LiXin, Z., ShengXiu, L., & ZongSuo, L. (2009). Differential plant growth and osmotic effects of two maize (Zea mays L.) cultivars to exogenous glycinebetaine application under drought stress. Plant Growth Regulation, 58, 297-305. https://doi.org/10.1007/s10725-009-9379-7

Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P. C., & Sohrabi, Y. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8), 580-585.

Maggio, A., Miyazaki, S., Veronese, P., Fujita, T., Ibeas, J. I., Damsz, B., Narasimhan, M. L., Hasegawa, P. M., Joly, R. J., & Bressan, R. A. (2002). Does proline accumulation play an active role in stress-induced growth reduction. The Plant Journal, 31(6), 699-712. https://doi.org/10.1046/j.1365-313X.2002.01389.x

Martin-StPaul, N., Delzon, S., & Cochard, H. (2017). Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 20(11), 1437-1447. https://doi.org/10.1111/ele.12851

Miranda, T., Ebner, M., Traiser, C., & Roth-Nebelsick, A. (2013). Diurnal pattern of stomatal conductance in the large-leaved temperate liana Aristolochia macrophylla depends on spatial position within the leaf lamina. Annals of Botany, 111(5), 905-915. https://doi.org/10.1093/aob/mct061

Nyachiro, J. M., Briggs, K. G., Hoddinott, J., & Johnson-Flanagan, A. M. (2001). Chlorophyll content, chlorophyll fluorescence and water deficit in spring wheat. Cereal Research Communications, 29, 135- 142. https://doi.org/10.1007/BF03543653

Ommen, O. E., Donnelly, A., Vanhoutvin, S., Oijen, M. van, & Manderscheid, R. (1999). Chlorophyll content of spring wheat flag leaves grown under elevated CO2 concentrations and other environmental stresses within the ESPACE-wheat project. European Journal of Agronomy, 10(3-4), 197-203. https://doi.org/10.1016/S1161-0301(99)00011-8

Opeke, L. K. (2006). Tropical commodity crops. Ibadan, Nigeria: Spectrum Books Ltd.

Pastori, G. M., & Trippi, V. S. (1992). Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant and Cell Physiology, 33(7), 957-961. https://doi.org/10.1093/oxfordjournals.pcp.a078347

Putra, E. T. S., Zakaria, W., Abdullah, N. A. P., & Saleh, G. B. (2012). Stomatal Morphology, Conductance and Transpiration of Musa sp. cv. Rastali in Relation to Magnesium, Boron and Silicon Availability. American Journal of Plant Physiology, 7(2), 84-96. https://doi.org/10.3923/ajpp.2012.84.96

Routley, D. G. (1966). Proline Accumulation in wilted Ladino clover leaves. Crop Science, 6(4), 358-361. https://doi.org/10.2135/cropsci1966.0011183X000600040019x

Sanchez, F. J., Manzanares, M., Andres, E. F. de, Tenorio, J. L., & Ayerbe, L. (1998). Turgor maintenance, osmotic adjustment and soluble sugar and praline accumulation in 49 pea cultivars in response to water stress. Field Crops Research, 59(3), 225-235.

Sawhney, V., & Singh, D. P. (2002). Effect of chemical desiccation at the post-anthesis stage on some physiological and biochemical changes in the flag leaf of contrasting wheat genotypes. Field Crops Research, 77(1), 1-6. https://doi.org/10.1016/S0378-4290(01)00192-7

Scalabrin, E., Radaelli, M., Rizzato, G., Bogani, P., Buiatti, M., Gambaro A., & Capodaglio, G. (2015). Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: Unraveling metabolic responses. Analytical and Bioanalytical Chemistry, 407, 6357-6368. https://doi.org/10.1007/s00216-015-8770-7

Sheffield, J., Wood, E. F., & Roderick, M. L. (2012). Little change in global drought over the past 60 years. Nature, 491, 435-438. https://doi.org/10.1038/nature11575

Smirnoff, N. (1995). Antioxidant systems and plant response to the environment. In V. Smirnoff (Eds.), Environment and Plant Metabolism. Flexibility and Acclimation (pp. 217-243) Oxford, UK: BIOS Scientific Publishers.

Soni, P., Nutan, K. K., Soda, N., Nongpiur, R. C., Roy, S., Singla-Pareek, S. L., & Pareek, A. (2015). Towards Understanding Abiotic Stress Signaling in Plants: Convergence of Genomic, Transcriptomic, Proteomic, and Metabolomic Approaches. In G. K. Pandey (Eds.), Elucidation of Abiotic Stress Signaling in Plants (Vol. 1, pp. 3-40) New York: Springer. https://doi.org/10.1007/978-1-4939-2211-6_1

Tezara, W., Pereyra, G., Ávila-Lovera, E., & Herrera, A. (2020). Variability in physiological responses of Venezuelan cacao to drought. Experimental Agriculture, 56(3), 407-421. https://doi.org/10.1017/S0014479720000058

Tezara, W., Urich, R., Jaimez, R., Coronel, I., Araque, O., Azócar, C., & Chacón, I. (2016). Does Criollo cocoa have the same ecophysiological characteristics than Forastero? Botanical Sciences, 94(3), 563-574.

Tokihiko, N., Fujita, M., Seki, M., Kato, T., Tabata, S., & Shinozaki, K. (2003). Toxicity of Free Proline Revealed in an Arabidopsis T-DNA-Tagged Mutant Deficient in Proline Dehydrogenase. Plant and Cell Physiology, 44(5), 541-548, https://doi.org/10.1093/pcp/pcg066

Tombesia, S., Frionia, T., Ponia, S., & Palliotti, A. (2018). Effect of water stress “memory” on plant behavior during subsequent drought stress. Environmental and Experimental Botany, 150, 106-114. https://doi.org/10.1016/j.envexpbot.2018.03.009

Trenberth, K. E., Dai, A., Schrier, G. van der, Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4, 17-22. https://doi.org/10.1038/nclimate2067

Tyree, M. T., Engelbrecht, B. M. J., Vargas, G., & Kursar, T. A. (2003). Desiccation Tolerance of Five Tropical Seedlings in Panama. Relationship to a Field Assessment of Drought Performance. Plant Physiology, 132(3), 1439-1447. https://doi.org/10.1104/pp.102.018937

Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35, 753-759. https://doi.org/10.1007/s00726- 008-0061-6

Wang, Y., Xu, L., Shen, H., Wang, J., Liu, W., Zhu, X., Wang, R., Sun, X., & Liu, L. (2015). Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb &Cd stress response of radish roots. Scientific Reports, 5, 18296. https://doi.org/10.1038/srep18296

Watanabe, S., Kojima, K., Ide, Y., & Sasaki, S. (2000). Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell, Tissue and Organ Culture, 63, 199-206. https://doi.org/10.1023/A:1010619503680

Witt, S., Galicia, L., Lisec, J., Cairns, J., Tiessen, A., Araus, J. L., Palacios-Rojas, N., Fernie, A. R. (2012). Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Molecular Plant, 5(2), 401-417. https://doi.org/10.1093/mp/ssr102

Yancy, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., & Somero, G. N. (1982). Living with water stress: evolution of osmolyte systems. Science, 217(4566), 1214-1223.

Zhang, J., Chen, G., Zhao, P., Zhou, Q., & Zhao, X. (2017). The abundance of certain metabolites responds to drought stress in the highly drought tolerant plant Caragana korshinskii. Acta Physiologiae Plantarum, 39, 116. https://doi.org/10.1007/s11738-017-2412-y

Zobayed, S. M. A., Afreen, F., & Kozai, T. (2005). Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s Wort. Plant Physiology and Biochemistry, 43(10-11), 977-984. https://doi.org/10.1016/j.plaphy.2005.07.013

Published

24-11-2022

How to Cite

Olayemi, L., S. Agele, A. Adejobi, and P. Aiyelari. “Effects of Watering Regime on the Morphological, Physiological and Functional Traits of Seedlings of Cacao Provenances under Screen House Conditions”. Journal of Plant Stress Physiology, vol. 8, Nov. 2022, pp. 44-55, doi:10.25081/jpsp.2022.v8.7348.

Issue

Section

Articles