Response of two different Phoenix dactylifera cultivars to future climate conditions

Authors

  • Nasser Abdullah Ghdayer Al Kaabi Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box No. 15551, Al Ain, UAE
  • Saif Ali Matar Al Blooshi Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box No. 15551, Al Ain, UAE
  • Karthishwaran Kandhan Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box No. 15551, Al Ain, UAE
  • Abdul Jaleel Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box No. 15551, Al Ain, UAE
  • Mohammed Abdul Mohsen Alyafei Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box No. 15551, Al Ain, UAE

DOI:

https://doi.org/10.25081/jaa.2023.v9.8739

Keywords:

Phoenix dactylifera, Future climate conditions, Antioxidant enzymes

Abstract

Plants are naturally exposed to various environmental stresses that affect their growth and development. As a desert plant, Phoenix dactylifera (date palm) has developed strategies to protect itself from most abiotic stresses. However, projected climate changes and the interaction between the various abiotic stressors will have profound effects on date palm adaptation and production In the present study, the two date palm cultivars, Sultana and Zamli cultivars were exposed to elevated levels of CO2 and enhanced UVB radiation and non-enzymatic antioxidants (total phenols, α-tocopherol, reduced glutathione content) and antioxidant enzyme activities (polyphenol oxidase, peroxidase, superoxide dismutase, catalase, ascorbate peroxidase) activities were analysed. The results showed that the Sultana cultivar is tolerant to future climate conditions. However, more biotic stress and yield parameters are needed for the identification of biotic stress tolerant date palm cultivars.

Downloads

Download data is not yet available.

References

Agarwal, S. (2007). Increased antioxidant activity in Cassia seedlings under UV-B radiation. Biologia Plantarum, 51, 157-160. https://doi.org/10.1007/s10535-007-0030-z

Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351-371. https://doi.org/10.1111/j.1469-8137.2004.01224.x

Allen, D. J., Mckee, I. F., Farage, P. K., & Baker, N. R. (1997). Analysis of limitations to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B. Plant, Cell and Environment, 20(5), 633-640. https://doi.org/10.1111/j.1365-3040.1997.00093.x

Asada, K., & Takahashi, M. (1987). Production and scavenging of active oxygen in photosynthesis. In D. J. Kyle, C. B. Osmond & C. J. Arntzen (Eds.), Photoinhibition (pp. 227-287) Amsterdam, Netherlands: Elsevier.

Backer, H., Frank, O., Angelis, B. D., & Feingold, S. (1980). Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutrition Reports International, 21(4), 531-536.

Bowler, C., Montagu, M. V., & Inzé, D. (1992). Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 83-116. https://doi.org/10.1146/annurev.pp.43.060192.000503

Chandlee, J. M., & Scandalios, J. G. (1984). Analysis of variants affecting the catalase developmental program in maize scutellum. Theoretical and Applied Genetics, 69, 71-77. https://doi.org/10.1007/BF00262543

Chen, Q., Zhang, M., & Shen, S. (2011). Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiologiae Plantarum, 33, 273-278. https://doi.org/10.1007/s11738-010-0543-5

Del Valle, J. C., Buide, M. L., Whittall, J. B., Valladares, F., & Narbona, E. (2020). UV radiation increases phenolic compound protection but decreases reproduction in Silene littorea. PloS One, 15(6), e0231611. https://doi.org/10.1371/journal.pone.0231611

Dwivedi, R., Singh, V. P., Kumar, J., & Prasad, S. M. (2015) Differential physiological and biochemical responses of two Vigna species under enhanced UV-B radiation. Journal of Radiation Research and Applied Sciences, 8(2), 173-181. https://doi.org/10.1016/j.jrras.2014.12.002

Griffith, O. W. (1980). Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 106(1), 207-212. https://doi.org/10.1016/0003-2697(80)90139-6

Han, C., Liu, Q., & Yang, Y. (2009). Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defence of Picea asperata seedlings. Plant Growth Regulation, 58, 153-162. https://doi.org/10.1007/s10725-009-9363-2

Hwang, C.-S., Rhie, G., Kim, S.-T., Kim, Y.-R., Huh, W.-K., Baek, Y.-U., & Kang, S.-O. (1999). Copper- and zinc-containing superoxide dismutase and its gene from Candida albicans. Biochimica et Biophysica Acta (BBA) - General Subjects, 1427(2), 245-255. https://doi.org/10.1016/s0304-4165(99)00020-3

IPCC. (2014). Summary for policymakers. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea & L. L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects (Intergovernmental Panel on Climate Change Report), (pp. 1-32) Cambridge, UK: Cambridge University Press.

Kakani, V. G., Reddy, K. R., Zhao, D., & Sailaja, K. (2003). Field crop responses to ultraviolet-B radiation: a review. Agricultural and Forest Meteorology, 120(1-4), 191-218. https://doi.org/10.1016/j.agrformet.2003.08.015

Kizhisseri, M. I., Mohamed, M. M., El-Shorbagy, W., Chowdhury, R., McDonald, A. (2021) Development of a dynamic water budget model for Abu Dhabi Emirate, UAE. PLoS One, 16(1), e0245140. https://doi.org/10.1371/journal.pone.0245140

Kondo, N., & Kawashima, M. (2000). Enhancement of the tolerance to oxidative stress in cucumber (Cucumis sativus L.) seedlings by UV-B irradiation: possible involvement of phenolic compounds and antioxidative enzymes. Journal of Plant Research, 113, 311-317. https://doi.org/10.1007/PL00013863

Kumar, K. B. & Khan, P. A. (1982). Peroxidase and Polyphenol Oxidase in Excised Ragi (Eleusine coracana cv. PR 202) Leaves during Senescence. Indian Journal of Experimental Botany, 20, 412-416.

Lee, Y.-P., Kim, S.-H., Bang, J.-W., Lee, H.-S., Kwak, S.-S., & Kwon, S.-Y. (2007). Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Reports, 26, 591-598. https://doi.org/10.1007/s00299-006-0253-z

Long, S. P., Ainsworth, E. A., Rogers, A., & Ort, D. R. (2004). Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology,

, 591-628. https://doi.org/10.1146/annurev.arplant.55.031903.141610

Mackerness, S. A.-H., Jordan, B. R., & Thomas, B. (1999). Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet-B radiation (UV-B: 280–320 nm) in green and etiolated buds of pea (Pisum sativum L.). Journal of Photochemistry and Photobiology B: Biology, 48(2-3), 180-188. https://doi.org/10.1016/S1011-1344(99)00024-X

Malik, C. P., & Singh M. B. (1980). Plant Enzymology and Hitto-enzymology. New Delhi, India: Kalyani Publishers.

Mishra, V., Srivastava, G., & Prasad, S. M. (2009). Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation. Scientia Horticulturae, 120(3), 373-378. https://doi.org/10.1016/j.scienta.2008.11.024

Moghimifam, R., Niknam, V., Ebrahimzadeh, H., & Hejazi, M. A. (2020). The influence of different CO2 concentrations on the biochemical and molecular response of two isolates of Dunaliella sp. (ABRIINW-CH2 and ABRIINW-SH33). Journal of Applied Phycology, 32, 175-187. https://doi.org/10.1007/s10811-019-01914-6

Prasad, S. M., & Zeeshan, M. (2005). UV-B radiation and cadmium induced changes in growth, photosynthesis, and antioxidant enzymes of cyanobacterium Plectonema boryanum. Biologia Plantarum, 49, 229-236. https://doi.org/10.1007/s10535-005-0236-x

Santos, I., Fernanda, F., Jose, M. A., & Roberta, S. (2004). Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation. Plant Science, 167, 925-935. https://doi.org/10.1016/j.plantsci.2004.05.035

Shabani, F., Kumar, L., & Taylor, S. (2012). Climate change impacts on the future distribution of date palms: A modeling exercise using CLIMEX. PloS One, 7(10), e48021. https://doi.org/10.1371/journal.pone.0048021

van der Kooi, C. J., Reich, M., Löw, M., De Kok, L. J., & Tausz, M. (2016). Growth and yield stimulation under elevated CO2 and drought: a meta-analysis on crops. Environmental and Experimental Botany, 122, 150-157. https://doi.org/10.1016/j.envexpbot.2015.10.004

Wang, D., Heckathorn, S. A., Wang, X., & Philpott, S. M. (2012). A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia, 169, 1-13. https://doi.org/10.1007/s00442-011-2172-0

WMO. (2008). WMO Statement on the Status of the Global Climate in 2007 (WMO, 1031). Geneva: World Meteorological Organization.

Zaefyzadeh, M., Quliyev, R. A., Babayeva, S. M., & Abbasov, M. A. (2009). The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turkish Journal of Biology, 33(1), 1. https://doi.org/10.3906/biy-0801-12

Zagoskina, N. V., Dubravina, G. A., Alyavina, A. K., & Goncharuk, E. A. (2003). Effect of Ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures. Russian Journal of Plant Physiology, 50, 270-275. https://doi.org/10.1023/A:1022945819389

Published

21-12-2023

How to Cite

Kaabi, N. A. G. A., Blooshi, S. A. M. A., Kandhan, K., Jaleel, A., & Alyafei, M. A. M. (2023). Response of two different Phoenix dactylifera cultivars to future climate conditions. Journal of Aridland Agriculture, 9, 144–149. https://doi.org/10.25081/jaa.2023.v9.8739

Issue

Section

Articles