Impact of irrigation management on crop water footprint reduction using RZWQM2 in Baghdad, Iraq

Authors

  • Saadi Sattar Shahadha College of Energy and Environmental Sciences, Al-Karkh University of Science, Baghdad, Iraq
  • Muneam K. Mukhlif College of Agricultural Engineering Sciences, University of Baghdad, Baghdad, Iraq
  • Riyadh M. Salih Ministry of water resources, Baghdad, Iraq

DOI:

https://doi.org/10.25081/jaa.2023.v9.8544

Keywords:

Water footprint reduction, Surface irrigation practices, Wheat and barley, RZWQM2, Iraq

Abstract

Water scarcity becomes a serious global challenge in several world regions and particularly in the Middle East. Appropriate irrigation practice is critical for improving crop yield and alleviating crop water footprint (WF). To alleviate water scarcity, the possibility of reducing wheat and barley water footprint has been examined through alternative surface irrigation practices. The WF was compared under farmers’ irrigation practice and experimental irrigation practice to discover the impact of irrigation practices on the reduction of WF in the west of Baghdad. Weather data and crop management information were collected from 2016 to 2020 for the farmer’s fields in the study area as well as for the experimental field. The Root Zone Water Quality Model (RZWQM2) was used for estimating wheat and barley evapotranspiration. The study results showed that the crop WF was well estimated using the RZWQM2 due to the model capability and accuracy for estimating the impact of field management on crop evapotranspiration and crop water use. Experimental irrigation practice could improve crop yield, water use efficiency, and water profitability by up to 28%, 35%, and 35%, respectively; while the WF was reduced by 35%, compared to the farmers’ irrigation practice. The WF of the wheat crop was lower than the barley WF due to the low barley production.

Downloads

Download data is not yet available.

References

Abbas, N., Wasimi, S., Al-Ansari, N., & Sultana, N. (2018). Water resources problems of Iraq: Climate change adaptation and mitigation. Journal of Environmental Hydrology, 26, 6.

Abioye, E. A., Hensel, O., Esau, T. J., Elijah, O., Abidin, M. S. Z., Ayobami, A. S., Yerima, O., & Nasirahmadi, A. (2022). Precision irrigation management using machine learning and digital farming solutions. AgriEngineering, 4(1), 70-103. https://doi.org/10.3390/agriengineering4010006

Adhab, M. (2021). Be smart to survive: virus-host relationships in nature. Journal of Microbiology, Biotechnology and Food Sciences, 10(6), e3422. https://doi.org/10.15414/jmbfs.3422

Adhab, M., & Alkuwaiti, N. A. (2022). Geminiviruses occurrence in the middle east and their impact on agriculture in Iraq. In R. K. Gaur, P. Sharma & H. Czosnek (Eds.), Geminivirus: Detection, Diagnosis and Management (pp. 171-185). Cambridge, US: Academic Press. https://doi.org/10.1016/B978-0-323-90587-9.00021-3

Adhab, M., Al-Kuwaiti, N., & Al-Ani, R. (2021, November 15-16). Biodiversity and occurrence of plant viruses over four decades: Case study for Iraq. 2021 Third International Sustainability and Resilience Conference: Climate Change (pp. 159-163). IEEE. https://doi.org/10.1109/IEEECONF53624.2021.9668128

Adhab, M., Finke, D., & Schoelz, J. (2019). Turnip aphids (Lipaphis erysimi) discriminate host plants based on the strain of Cauliflower mosaic virus infection. Emirates Journal of Food and Agriculture, 31(1), 69-75. https://doi.org/10.9755/ejfa.2019.v31.i1.1903

Al-Ani, R. A., Adhab, M. A., El-Muadhidi, M. A., & Al-Fahad, M. A. (2011). Induced systemic resistance and promotion of wheat and barley plants growth by biotic and non-biotic agents against barley yellow dwarf virus. African Journal of Biotechnology, 10(56), 12078-12084.

Al-Ansari, N. A., Abdellatif, M., Ezeelden, M., Ali, S. S., & Knutsson, S. (2014). Climate change and future long term trends of rainfall at north-eastern part of Iraq. Journal of Civil Engineering and Architecture, 8(6), 790-805.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy. Retrieved from https://www.fao.org/3/x0490e/x0490e00.htm

Al-Said, F. A., Ashfaq, M., Al‐Barhi, M., Hanjra, M. A., & Khan, I. A. (2012). Water productivity of vegetables under modern irrigation methods in Oman. Irrigation and Drainage, 61(4), 477-489. https://doi.org/10.1002/ird.1644

Azimzadeh, S. M. (2012). Conservation tillage in Mediterranean climate (a review). Advances in Environmental Biology, 6(7), 1880-1890.

Bwambale, E., Abagale, F. K., & Anornu, G. K. (2022). Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agricultural Water Management, 260, 107324. https://doi.org/10.1016/j.agwat.2021.107324

Chen, X., Feng, S., Qi, Z., Sima, M. W., Zeng, F., Li, L., Cheng, H., & Wu, H. (2022). Optimizing Irrigation Strategies to Improve Water Use Efficiency of Cotton in Northwest China Using RZWQM2. Agriculture, 12(3), 383. https://doi.org/10.3390/agriculture12030383

Daham, A., Han, D., Jolly, W. M., Rico-Ramirez, M., & Marsh, A. (2019). Predicting vegetation phenology in response to climate change using bioclimatic indices in Iraq. Journal of Water and Climate Change, 10(4), 835-851. https://doi.org/10.2166/wcc.2018.142

Davis, K. F., Rulli, M. C., Seveso, A., & D’Odorico, P. (2017). Increased food production and reduced water use through optimized crop distribution. Nature Geoscience, 10, 919-924. https://doi.org/10.1038/s41561-017-0004-5

Ewaid, S. H., Abed, S. A., & Al-Ansari, N. (2019). Water footprint of wheat in Iraq. Water, 11(3), 535. https://doi.org/10.3390/w11030535

Ewaid, S. H., Abed, S. A., Abbas, A. J., & Al-Ansari, N. (2020). Estimation the Virtual Water Content and the Virtual Water Transfer for Iraqi Wheat. Journal of Physics: Conference Series, 1664, 012143. https://doi.org/10.1088/1742-6596/1664/1/012143

FAO. (2018). CLIMWAT - Climatic Database to be Used with CROPWAT. (2018). Retrieved from https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/zh/c/1026544/

Farahani, H. J., & Ahuja, L. R. (1996). Evapotranspiration modeling of partial canopy/residue-covered fields. Transactions of the ASAE, 39(6), 2051-2064.

Hejazi, M. I., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., Wise, M., Patel, P., Eom, J., & Calvin, K. (2014). Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrology and Earth System Sciences, 18(8), 2859-2883. https://doi.org/10.5194/hess-18-2859-2014

Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2011). The water footprint assessment manual: Setting the global standard. London, UK: Earthscan Ltd.

Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E., & Richter, B. D. (2012). Global monthly water scarcity: blue water footprints versus blue water availability. PLoS One, 7(2), e32688. https://doi.org/10.1371/journal.pone.0032688

Hu, H., & Xiong, L. (2014). Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology, 65, 715-741. https://doi.org/10.1146/annurev-arplant-050213-040000

Jaradat, A. A. (2003). Agriculture in Iraq: resources, potentials, constraints, and research needs and priorities. Food, Agriculture, and Environment, 1(2), 160-166.

Khalaf, L. K., Adhab, M., Aguirre-Rojas, L. M., & Timm, A. E. (2023). Occurrences of wheat curl mite aceria tosichella keifer 1969 (eriophyidae) and the associated viruses, (WSMV, HPWMoV, TriMV) in Iraq. Iraqi Journal of Agricultural Sciences, 54(3), 837-849. https://doi.org/10.36103/ijas.v54i3.1767

Kreins, P., Henseler, M., Anter, J., Herrmann, F., & Wendland, F. (2015). Quantification of climate change impact on regional agricultural irrigation and groundwater demand. Water Resources Management, 29, 3585-3600.

Ma, L., Ahuja, L. R., Islam, A., Trout, T. J., Saseendran, S. A., & Malone, R. W. (2017). Modeling Yield and Biomass Responses of Maize Cultivars to Climate Change under Full and Deficit Irrigation. Agricultural Water Management, 180, 88-98. https://doi.org/10.1016/j.agwat.2016.11.007

Ma, L., Nielsen, D. C., Ahuja, L. R., Malone, R. W., Saseendran, S. A., Rojas, K. W., Hanson, J. D., & Benjamin, J. G. (2003). Evaluation of RZWQM under varying irrigation levels in eastern Colorado. Transactions of the ASAE, 46(1), 39-49.

Ma, Q. L., Hook, J. E., & Wauchope, R. D. (1999). Evapotranspiration Predictions: A Comparison among Gleams, Opus, Przm-2, and RZWQM Models in a Humid and Thermic Climate. Agricultural Systems, 59(1), 41-55. https://doi.org/10.1016/S0308-521X(98)00081-X

Masood, T. K., & Shahadha, S. S. (2021). Simulating the effect of climate change on winter wheat production and water/nitrogen use efficiency in Iraq: case study. Iraqi Journal of Agricultural Science, 52(4), 999-1007. https://doi.org/10.36103/ijas.v52i4.1411

Mekonnen, M. M., & Hoekstra, A. Y. (2010). A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrology and Earth System Sciences, 14(7), 1259-1276. https://doi.org/10.5194/hess-14-1259-2010

Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. https://doi.org/10.1126/sciadv.1500323

Nouri, H., Stokvis, B., Galindo, A., Blatchford, M., & Hoekstra, A. Y. (2019). Water scarcity alleviation through water footprint reduction in agriculture: the effect of soil mulching and drip irrigation. Science of the Total Environment, 653, 241-252. https://doi.org/10.1016/j.scitotenv.2018.10.311

Pi, X., Zhang, T., Sun, B., Cui, Q., Guo, Y., Gao, M., Feng, H., & Hopkins, D. W. (2017). Effects of mulching for water conservation on soil carbon, nitrogen and biological properties. Frontiers of Agricultural Science and Engineering, 4(2), 146-154.

Qader, S. H., Dash, J., & Atkinson, P. M. (2018). Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq. Science of the Total Environment, 613-614, 250-262. https://doi.org/10.1016/j.scitotenv.2017.09.057

Sarker, K. K., Akanda, M. A. R., Biswas, S. K., Roy, D. K., Khatun, A., & Goffar, M. A. (2016). Field performance of alternate wetting and drying furrow irrigation on tomato crop growth, yield, water use efficiency, quality and profitability. Journal of Integrative Agriculture, 15(10), 2380-2392. https://doi.org/10.1016/S2095-3119(16)61370-9

Shahadha, S. S., & Wendroth, O. (2022). Can one‐time calibration of measured soil hydraulic input parameters yield appropriate simulations of RZWQM2? Soil Science Society of America Journal, 86(6), 1523-1537.

Shahadha, S. S., Wendroth, O., & Ding, D. (2021). Nitrogen and Rainfall effects on Crop Growth - Experimental Results and Scenario Analyses. Water, 13(16), 2219. https://doi.org/10.3390/w13162219

Shahadha, S. S., Wendroth, O., Zhu, J., & Walton, J. (2019). Can measured soil hydraulic properties simulate field water dynamics and crop production? Agricultural Water Management, 223, 105661. https://doi.org/10.1016/j.agwat.2019.05.045

Shahadha, S. S., Zeki, S. L., Salih, R., Salim, A. H., & Dawood, I. A. (2022). Studying the Impact of Climate Change on the Evapotranspiration and Water Use Efficiency of Wheat Crop in Iraq. Journal of Water Resources and Geosciences, 1(2), 118-130.

Shuttleworth, W. J., & Wallace, J. S. (1985). Evaporation from sparse crops‐an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 111(469), 839-855. https://doi.org/10.1002/qj.49711146910

Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58-73. https://doi.org/10.1016/j.aiia.2020.04.002

Tsakmakis, I. D., Zoidou, M., Gikas, G. D., & Sylaios, G. K. (2018). Impact of irrigation technologies and strategies on cotton water footprint using AquaCrop and CROPWAT models. Environmental Processes, 5, 181-199. https://doi.org/10.1007/s40710-018-0289-4

Tsakmakis, I., Kokkos, N., Pisinaras, V., Papaevangelou, V., Hatzigiannakis, E., Arampatzis, G., Gikas, G. D., Linker, R., Zoras, S., Evagelopoulos, V., Tsihrintzis, V. A., Battilani, A., & Sylaios, G. (2017). Operational precise irrigation for cotton cultivation through the coupling of meteorological and crop growth models. Water Resources Management, 31, 563-580. https://doi.org/10.1007/s11269-016-1548-7

Wedaa, Z. W., Abed, S. A., & Ewaid, S. H. (2022), May. The Agricultural Water Footprint of Al-Qadisiyah Governorate, Southern Iraq. IOP Conference Series: Earth and Environmental Science, 1029, 012025. https://doi.org/10.1088/1755-1315/1029/1/012025

Published

07-10-2023

How to Cite

Shahadha, S. S., Mukhlif , M. K., & Salih, R. M. (2023). Impact of irrigation management on crop water footprint reduction using RZWQM2 in Baghdad, Iraq. Journal of Aridland Agriculture, 9, 72–80. https://doi.org/10.25081/jaa.2023.v9.8544

Issue

Section

Articles