Eruca sativa plants modulate growth and gas exchange when cultivated under salinity stress after leaching fractions

Authors

DOI:

https://doi.org/10.25081/jaa.2023.v9.8538

Keywords:

Rocket plants, Salinity levels, Photosynthetic rate, Stomatal conductance, Fresh and dry mass

Abstract

The physiology of rocket plants at different salinity levels through irrigation water and leaching fractions was assessed. Four salinity levels of irrigation water: 0.10, 1.60, 3.10 and 4.60 dS m-1 and three leaching fractions: 0, 10 and 20% were applied. The physiological variables analyzed were photosynthetic rate, stomatal conductance, transpiration rate and photosynthetic pigment contents. The growth and biomass production were analyzed by: plant height, number of leaves, leaf area and partitioned and total plant fresh and dry mass, and root to aerial part ratio. The leaching fraction of 10% combined with irrigation with water salinity levels ranging from 0.10 to 0.88 dS m-1 resulted in greater plant height, leaf area and root, shoot and total dry mass. The leaching fraction of 20% with irrigation water with salinity levels from 0.10 to 2.7 dS m-1 generates higher leaf number, shoot fresh mass, root-to-shoot ratio, stomatal conductance, and photosynthetic rate. Irrigation water with a salinity level of 0.10 dS m-1 provides a higher transpiration rate for rocket plants. Irrigation water with a salinity level of 4.6 dS m-1 generates higher chlorophyll a, b and total (a + b) and carotenoid contents in rocket plants.

Downloads

Download data is not yet available.

References

Alzahib, R. H., Migdadi, H. M., Al Ghamdi, A. A., Alwahibi, M. S., Ibrahim, A. A., & Al-Selwey, W. A. (2021). Assessment of morpho-physiological, biochemical and antioxidant responses of tomato landraces to salinity stress. Plants, 10(4), 696. https://doi.org/10.3390/plants10040696

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidade in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1

Blumwald, E. (2000). Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 12(4), 431-434. https://doi.org/10.1016/S0955-0674(00)00112-5

Byrt, C. S., Xu, B., Krishnan, M., Lightfoot, D. J., Athman, A., Jacobs, A. K., Watson-Haigh, N. S., Plett, D., Munns, R., Tester, M., & Gilliham, M. (2014). The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat. The Plant Journal, 80(3), 516-526. https://doi.org/10.1111/tpj.12651

Chen, M., Yang, Z., Liu, J., Zhu, T., Wei, X., Fan, H., & Wang, B. (2018). Adaptation mechanism of salt excluders under saline conditions and its applications. International Journal of Molecular Sciences, 19(11), 3668. https://doi.org/10.3390/ijms19113668

Cheng, M., Wang, H., Fan, J., Wang, X., Sun, X., Yang, L., Zhang, S., Xiang, Y., & Zhang, F. (2021). Crop yield and water productivity under salty water irrigation: A global meta-analysis. Agricultural Water Management, 256, 107105. https://doi.org/10.1016/j.agwat.2021.107105

Damasceno, L. F., Cova, A. M. W., Gheyi, H. R., Almeida, W. F. D., Dias, J. A. A. L., & Ribeiro, V. D. S. (2022). Production and water consumption of eggplant under salt stress and continuous drip and pulse drip irrigation. Revista Caatinga, 35(2), 450-459. https://doi.org/10.1590/1983-21252022v35n220rc

de Oliveira, M. A. D., Carneiro, P. T., Alves, M. C. J. L., e Silva, T. V., Neto, G. da C. G., Matos, T. J. R., Souza, M. A., dos Santos, A. F., da Costa, J. G., & Pavão, J. M. da S. J. (2021). Physiological indicators in two lettuce cultivars under saline stress. Journal of Agricultural Science, 13(4), 52-63. https://doi.org/10.5539/jas.v13n4p52

dos Santos, D. P., dos Santos, C. S., da Silva, P. F., Pinheiro, M. P. M. A., & Santos, J. C. (2016). Crescimento e fitomassa da beterraba sob irrigação suplementar com água de diferentes concentrações salinas. Revista Ceres, 63(4), 509-516. https://doi.org/10.1590/0034-737X201663040011

FAO. (2015). Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. Rome, Italy: FAO. Retrieved from https://www.fao.org/3/i5199e/I5199E.pdf

Ferreira, D. F. (2014). Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2), 109-112. https://doi.org/10.1590/S1413-70542014000200001

García-Valenzuela, X., García-Moya, E., Rascón-Cruz, Q., Herrera-Estrella, L., & Aguado-Santacruz, G. A. (2005). Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. Journal of Plant Physiology, 162(6), 650-656. https://doi.org/10.1016/j.jplph.2004.09.015

Graciano, E. S. A., Nogueira, R. J. M. C., Lima, D. R. M., Pacheco, C. M., & Santos, R. C. (2011). Crescimento e capacidade fotossintética da cultivar de amendoim BR 1 sob condições de salinidade (Growth and photosynthetic capacity of the peanut cultivar BR 1 under saline conditions). Revista Brasileira de Engenharia Agrícola e Ambiental, 15(8), 794-800. https://doi.org/10.1590/S1415-43662011000800005

Guimarães, R. F. B., Júnior, S. de O. M., do Nascimento, R., de Melo, D. F., Ramos, J. G., & de Andrade, J. R. (2019). Trocas gasosas em cultivares de alface crespa em cultivo hidropônico com água salina (Leaf gas exchange of curly lettuce cultivars in hydroponic cultivation with saline water). Revista Brasileira de Agricultura Irrigada, 13(4), 3599. https://doi.org/10.7127/RBAI.V13N4001091

Haj-Amor, Z, Araya, T., Kim, D.-G., Bouri, S., Lee, J., Ghiloufi, W., Yang, Y., Kang, H., Jhariya, M. K., Banerjee, A., & Lal, R. (2022). Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Science of the Total Environment, 843, 156946. https://doi.org/10.1016/j.scitotenv.2022.156946

Hniličková, H., Hnilička, F., Martinkova, J., & Kraus, K. (2017). Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant, Soil and Environment, 63(8), 362-367. https://doi.org/10.17221/398/2017-PSE

IBGE. (2017). Instituto Brasileiro de Geografia e Estatística. 2017. Censo agropecuário 2017. Rio de Janeiro, Brazil: IBGE.

Ivanova, K., Anev, S., Tzvetkova, N., Georgieva, T., & Markovska, Y. (2015). Influence of salt stress on stomatal, biochemical and morphological factors limiting photosynthetic gas exchange in Paulownia Elongata x Fortunei. Comptes rendus de l’Académie Bulgare des Sciences, 68(2), 217-224.

Júnior, J. E. C., Júnior, J. A. S., Martins, J. B., de França e Silva, E. F., & de Almeida, C. D. G. C. (2018). Rocket production in a low cost hydroponic system using brackish water. Revista Caatinga, 31(4), 1008-1016. https://doi.org/10.1590/1983-21252018v31n424rc

Krishnamurthy, P., Ranathunge, K., Nayak, S., Schreiber, L., & Mathew, M. K. (2011). Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). Journal of Experimental Botany, 62(12), 4215-4228. https://doi.org/10.1093/jxb/err135

Lichtenthaler, H. K. (1987). Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1

Lili, Z., Peiling, Y., Wengang, Z., Yunkai, L., Yu, L., & Chong, Z. (2021). Effects of water salinity on emitter clogging in surface drip irrigation systems. Irrigation Science, 39, 209-222. https://doi.org/10.1007/s00271-020-00690-3

Machado, R. M. A., & Serralheiro, R. P. (2017). Soil Salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030

Medeiros, J. F., Nascimento, I. B., & Ghery, H. R. (2010). Manejo do solo-água-planta em área afetadas por sais. In H. R. Gheyi, N. S. Dias & C. F. Lacerda (Eds.), Manejo da salinidade na agricultura: estudos básicos e aplicados (pp. 279-302). Fortaleza, Brazil: INCT Sal.

Moura, K. K. C. de S., Neto, F. B., Pontes, F. S. T., de Lima, J. S. S., & Moura, K. H. S. (2008). Avaliação econômica de rúcula sob diferentes espaçamentos de plantio. Revista Caatinga, 21(2), 113-118.

Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736. https://doi.org/10.1016/j.jenvman.2020.111736

Pavão, J. M. da S. J., de Castro, E. M., Anna, S. A. C. S., Bomfim, T. R. de P., dos Santos, A. F., da Costa, J. G., Souza, M. A., & Rocha, T. J. M. (2019). Anatomical aspects of the ginger flower Etlingera elatior (Jack.) RM Smith, acclimatization with the usage of different nutritive solutions. Emirates Journal of Food and Agriculture, 31(9), 708-717. https://doi.org/10.9755/ejfa.2019.v31.i9.2010

Petretto, G. L., Urgeghe, P. P., Massa, D., & Melito, S. (2019). Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes. Plant Physiology and Biochemistry, 141, 30-39. https://doi.org/10.1016/j.plaphy.2019.05.012

Rhoades, J. D., & Loveday, L. (1990). Salinity in irrigated agriculture. In B. A. Stewart & D. R. Nielsen (Eds.), Irrigation of agricultural crops (Vol. 30, pp. 1089-1142). Madison: American Society of Agronomists.

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., & Cunha, T. J. F. (2018a). Sistema Brasileiro de Classificação de Solos. (5th ed.). Brasília, Brazil: Embrapa.

Santos, R. S. da S., Dias, N. da S., Duarte, S. N., Lima, C. J. G. de S., Fernandes, C. dos S., & de Miranda, J. H. (2018b). Cultivo da rúcula em substrato de fibra de coco sob solução nutritiva salina. Revista Cultura Agronômica, 27(1), 12-21. https://doi.org/10.32929/2446-8355.2018v27n1p12-21

Schiattone, M. I., Candido, V., Cantore, V., Montesano, F. F., & Boari, F. (2017). Water use and crop performance of two wild rocket genotypes under salinity conditions. Agricultural Water Management, 194, 214-221. https://doi.org/10.1016/j.agwat.2017.09.009

Shabani, A., Sepaskhah, A. R., & Kamgar-Haghighi, A. A. (2013). Growth and physiologic response of rapeseed (Brassica napus L.) to deficit irrigation, water salinity and planting method. International Journal of Plant Production, 7(3), 569-596. https://doi.org/10.22069/ijpp.2013.1119

Sharma, S. K. (1996). Soil salinity effects on transpiration and net photosynthetic rates, stomatal conductance and Na+ and Cl- contents in durum wheat. Biologia Plantarum, 38(4), 519-523. https://doi.org/10.1007/BF02890599

Shrivastava, P., & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001

Silva, R. B., Teodoro, I., de Souza, J. L., Junior, R. A. F., Magalhaes, I. D., dos Santos, M. A., Lyra, G. B., Filho, G. M., de Souza, R. C., Silva, L. K. dos S., Santos, J. V., & de Oliveira, J. D. S. (2021). Physiological and productive aspects of cassava under different irrigation levels. Bragantia, 80, e5321. https://doi.org/10.1590/1678-4499.20200501

van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt Tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403-433. https://doi.org/10.1146/annurev-arplant-050718-100005

Published

18-08-2023

How to Cite

Silva, T. V. e, Carneiro, P. T., Santos, V. R. dos, Silva, R. B., Neto, G. da C. G., & Pavão, J. M. da S. J. (2023). Eruca sativa plants modulate growth and gas exchange when cultivated under salinity stress after leaching fractions. Journal of Aridland Agriculture, 9, 63–71. https://doi.org/10.25081/jaa.2023.v9.8538

Issue

Section

Articles