Eruca sativa plants modulate growth and gas exchange when cultivated under salinity stress after leaching fractions




Rocket plants, Salinity levels, Photosynthetic rate, Stomatal conductance, Fresh and dry mass


The physiology of rocket plants at different salinity levels through irrigation water and leaching fractions was assessed. Four salinity levels of irrigation water: 0.10, 1.60, 3.10 and 4.60 dS m-1 and three leaching fractions: 0, 10 and 20% were applied. The physiological variables analyzed were photosynthetic rate, stomatal conductance, transpiration rate and photosynthetic pigment contents. The growth and biomass production were analyzed by: plant height, number of leaves, leaf area and partitioned and total plant fresh and dry mass, and root to aerial part ratio. The leaching fraction of 10% combined with irrigation with water salinity levels ranging from 0.10 to 0.88 dS m-1 resulted in greater plant height, leaf area and root, shoot and total dry mass. The leaching fraction of 20% with irrigation water with salinity levels from 0.10 to 2.7 dS m-1 generates higher leaf number, shoot fresh mass, root-to-shoot ratio, stomatal conductance, and photosynthetic rate. Irrigation water with a salinity level of 0.10 dS m-1 provides a higher transpiration rate for rocket plants. Irrigation water with a salinity level of 4.6 dS m-1 generates higher chlorophyll a, b and total (a + b) and carotenoid contents in rocket plants.


Download data is not yet available.


Alzahib, R. H., Migdadi, H. M., Al Ghamdi, A. A., Alwahibi, M. S., Ibrahim, A. A., & Al-Selwey, W. A. (2021). Assessment of morpho-physiological, biochemical and antioxidant responses of tomato landraces to salinity stress. Plants, 10(4), 696.

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidade in Beta vulgaris. Plant Physiology, 24(1), 1-15.

Blumwald, E. (2000). Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 12(4), 431-434.

Byrt, C. S., Xu, B., Krishnan, M., Lightfoot, D. J., Athman, A., Jacobs, A. K., Watson-Haigh, N. S., Plett, D., Munns, R., Tester, M., & Gilliham, M. (2014). The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat. The Plant Journal, 80(3), 516-526.

Chen, M., Yang, Z., Liu, J., Zhu, T., Wei, X., Fan, H., & Wang, B. (2018). Adaptation mechanism of salt excluders under saline conditions and its applications. International Journal of Molecular Sciences, 19(11), 3668.

Cheng, M., Wang, H., Fan, J., Wang, X., Sun, X., Yang, L., Zhang, S., Xiang, Y., & Zhang, F. (2021). Crop yield and water productivity under salty water irrigation: A global meta-analysis. Agricultural Water Management, 256, 107105.

Damasceno, L. F., Cova, A. M. W., Gheyi, H. R., Almeida, W. F. D., Dias, J. A. A. L., & Ribeiro, V. D. S. (2022). Production and water consumption of eggplant under salt stress and continuous drip and pulse drip irrigation. Revista Caatinga, 35(2), 450-459.

de Oliveira, M. A. D., Carneiro, P. T., Alves, M. C. J. L., e Silva, T. V., Neto, G. da C. G., Matos, T. J. R., Souza, M. A., dos Santos, A. F., da Costa, J. G., & Pavão, J. M. da S. J. (2021). Physiological indicators in two lettuce cultivars under saline stress. Journal of Agricultural Science, 13(4), 52-63.

dos Santos, D. P., dos Santos, C. S., da Silva, P. F., Pinheiro, M. P. M. A., & Santos, J. C. (2016). Crescimento e fitomassa da beterraba sob irrigação suplementar com água de diferentes concentrações salinas. Revista Ceres, 63(4), 509-516.

FAO. (2015). Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. Rome, Italy: FAO. Retrieved from

Ferreira, D. F. (2014). Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2), 109-112.

García-Valenzuela, X., García-Moya, E., Rascón-Cruz, Q., Herrera-Estrella, L., & Aguado-Santacruz, G. A. (2005). Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. Journal of Plant Physiology, 162(6), 650-656.

Graciano, E. S. A., Nogueira, R. J. M. C., Lima, D. R. M., Pacheco, C. M., & Santos, R. C. (2011). Crescimento e capacidade fotossintética da cultivar de amendoim BR 1 sob condições de salinidade (Growth and photosynthetic capacity of the peanut cultivar BR 1 under saline conditions). Revista Brasileira de Engenharia Agrícola e Ambiental, 15(8), 794-800.

Guimarães, R. F. B., Júnior, S. de O. M., do Nascimento, R., de Melo, D. F., Ramos, J. G., & de Andrade, J. R. (2019). Trocas gasosas em cultivares de alface crespa em cultivo hidropônico com água salina (Leaf gas exchange of curly lettuce cultivars in hydroponic cultivation with saline water). Revista Brasileira de Agricultura Irrigada, 13(4), 3599.

Haj-Amor, Z, Araya, T., Kim, D.-G., Bouri, S., Lee, J., Ghiloufi, W., Yang, Y., Kang, H., Jhariya, M. K., Banerjee, A., & Lal, R. (2022). Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Science of the Total Environment, 843, 156946.

Hniličková, H., Hnilička, F., Martinkova, J., & Kraus, K. (2017). Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant, Soil and Environment, 63(8), 362-367.

IBGE. (2017). Instituto Brasileiro de Geografia e Estatística. 2017. Censo agropecuário 2017. Rio de Janeiro, Brazil: IBGE.

Ivanova, K., Anev, S., Tzvetkova, N., Georgieva, T., & Markovska, Y. (2015). Influence of salt stress on stomatal, biochemical and morphological factors limiting photosynthetic gas exchange in Paulownia Elongata x Fortunei. Comptes rendus de l’Académie Bulgare des Sciences, 68(2), 217-224.

Júnior, J. E. C., Júnior, J. A. S., Martins, J. B., de França e Silva, E. F., & de Almeida, C. D. G. C. (2018). Rocket production in a low cost hydroponic system using brackish water. Revista Caatinga, 31(4), 1008-1016.

Krishnamurthy, P., Ranathunge, K., Nayak, S., Schreiber, L., & Mathew, M. K. (2011). Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). Journal of Experimental Botany, 62(12), 4215-4228.

Lichtenthaler, H. K. (1987). Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382.

Lili, Z., Peiling, Y., Wengang, Z., Yunkai, L., Yu, L., & Chong, Z. (2021). Effects of water salinity on emitter clogging in surface drip irrigation systems. Irrigation Science, 39, 209-222.

Machado, R. M. A., & Serralheiro, R. P. (2017). Soil Salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30.

Medeiros, J. F., Nascimento, I. B., & Ghery, H. R. (2010). Manejo do solo-água-planta em área afetadas por sais. In H. R. Gheyi, N. S. Dias & C. F. Lacerda (Eds.), Manejo da salinidade na agricultura: estudos básicos e aplicados (pp. 279-302). Fortaleza, Brazil: INCT Sal.

Moura, K. K. C. de S., Neto, F. B., Pontes, F. S. T., de Lima, J. S. S., & Moura, K. H. S. (2008). Avaliação econômica de rúcula sob diferentes espaçamentos de plantio. Revista Caatinga, 21(2), 113-118.

Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736.

Pavão, J. M. da S. J., de Castro, E. M., Anna, S. A. C. S., Bomfim, T. R. de P., dos Santos, A. F., da Costa, J. G., Souza, M. A., & Rocha, T. J. M. (2019). Anatomical aspects of the ginger flower Etlingera elatior (Jack.) RM Smith, acclimatization with the usage of different nutritive solutions. Emirates Journal of Food and Agriculture, 31(9), 708-717.

Petretto, G. L., Urgeghe, P. P., Massa, D., & Melito, S. (2019). Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes. Plant Physiology and Biochemistry, 141, 30-39.

Rhoades, J. D., & Loveday, L. (1990). Salinity in irrigated agriculture. In B. A. Stewart & D. R. Nielsen (Eds.), Irrigation of agricultural crops (Vol. 30, pp. 1089-1142). Madison: American Society of Agronomists.

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., & Cunha, T. J. F. (2018a). Sistema Brasileiro de Classificação de Solos. (5th ed.). Brasília, Brazil: Embrapa.

Santos, R. S. da S., Dias, N. da S., Duarte, S. N., Lima, C. J. G. de S., Fernandes, C. dos S., & de Miranda, J. H. (2018b). Cultivo da rúcula em substrato de fibra de coco sob solução nutritiva salina. Revista Cultura Agronômica, 27(1), 12-21.

Schiattone, M. I., Candido, V., Cantore, V., Montesano, F. F., & Boari, F. (2017). Water use and crop performance of two wild rocket genotypes under salinity conditions. Agricultural Water Management, 194, 214-221.

Shabani, A., Sepaskhah, A. R., & Kamgar-Haghighi, A. A. (2013). Growth and physiologic response of rapeseed (Brassica napus L.) to deficit irrigation, water salinity and planting method. International Journal of Plant Production, 7(3), 569-596.

Sharma, S. K. (1996). Soil salinity effects on transpiration and net photosynthetic rates, stomatal conductance and Na+ and Cl- contents in durum wheat. Biologia Plantarum, 38(4), 519-523.

Shrivastava, P., & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131.

Silva, R. B., Teodoro, I., de Souza, J. L., Junior, R. A. F., Magalhaes, I. D., dos Santos, M. A., Lyra, G. B., Filho, G. M., de Souza, R. C., Silva, L. K. dos S., Santos, J. V., & de Oliveira, J. D. S. (2021). Physiological and productive aspects of cassava under different irrigation levels. Bragantia, 80, e5321.

van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt Tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403-433.



How to Cite

Silva, T. V. e, Carneiro, P. T., Santos, V. R. dos, Silva, R. B., Neto, G. da C. G., & Pavão, J. M. da S. J. (2023). Eruca sativa plants modulate growth and gas exchange when cultivated under salinity stress after leaching fractions. Journal of Aridland Agriculture, 9, 63–71.