Molecular characterisation and structural assessment of an RXLR effector from Phytophthora palmivora, the coconut bud rot pathogen


  • K.P. Gangaraj ICAR-Central Plantation Crops Research Institute, Kasaragod- 671124, Kerala, India & Mangalore University, Mangalagangotri, Mangaluru-574199, Karnataka, India
  • M.K. Rajesh ICAR-Central Plantation Crops Research Institute, Kasaragod- 671124, Kerala, India



Phytophthora species are phytopathogenic oomycetes that damage a wide variety of crops. Phytophthora delivers effectors, which are secretory proteins, into the host cells. Effectors promote infection by reprogramming the host cellular machinery and are key determinants of oomycete virulence. The major class of Phytophthora effector proteins contains the RXLR motif. In this study, we have carried out the molecular and structural characterisation of an RXLR effector (RXLR6744) from a virulent P. palmivora isolated from bud rot disease-affected coconut palm. The open reading frame (ORF) of the RXLR6744, amplified using RT-PCR, had a length of 411 bp. The gene was found to encode a predicted protein of 136 amino acids and had a molecular weight of 15.52 kDa. Phylogenetic analysis of the amino acid sequence revealed that it was closely related to RXLR proteins from P. palmivora (causing black pod disease in cocoa) and related species P. megakarya. Topology analysis revealed that the protein was composed of six α-helices. The structural prediction was undertaken by computer-aided homology modelling. From the Ramachandran plot analysis, it could be observed that the majority (96.3%) of amino acids were present in the preferred region, 3.7 per cent of amino acid residues were present in the allowed region, and no residues were observed in the disallowed region. The structure showed an average quality of 94.4 per cent, indicating it to be a high-quality structure. This study provides the detailed characterisation of an RXLR effector from P. palmivora. It will aid the elucidation of its role in pathogenesis and facilitate further refined investigations of the structure/function relationships of oomycete effectors.


Download data is not yet available.


Ai, G., Yang, K., Ye, W., Tian, Y., Du, Y., Zhu, H., Li, T., Xia, Q., Shen, D., Peng, H. and Jing, M. 2020. Prediction and characterisation of RXLR effectors in Pythium species. Molecular Plant-Microbe Interactions 33: 1046-1058.

Anderson, R.G., Deb, D., Fedkenheuer, K. and McDowell, J.M. 2015. Recent progress in RXLR effector research. Molecular Plant-Microbe Interactions 28: 1063-1072.

Armstrong, M.R., Whisson, S.C., Pritchard, L., Bos, J.I., Venter, E., Avrova, A.O., Rehmany, A.P., Böhme, U., Brooks, K., Cherevach, I. and Hamlin, N. 2005. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognised in the host cytoplasm. Proceedings of the National Academy of Sciences USA 102: 7766-7771.

Birch, P.R., Armstrong, M., Bos, J., Boevink, P., Gilroy, E.M., Taylor, R.M., Wawra, S., Pritchard, L., Conti, L., Ewan, R. and Whisson, S.C. 2009. Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. Journal of Experimental Botany 60: 1133-1140.

Birch, P.R., Rehmany, A.P., Pritchard, L., Kamoun, S. and Beynon, J.L. 2006. Trafficking arms: oomycete effectors enter host plant cells. Trends in Microbiology 14: 8-11.

Boutemy, L.S., King, S.R., Win, J., Hughes, R.K., Clarke, T.A., Blumenschein, T.M., Kamoun, S. and Banfield, M.J. 2011. Structures of Phytophthora RXLR effector proteins: A conserved but adaptable fold underpins functional diversity. Journal of Biological Chemistry 286: 35834-35842.

Chang, K.Y. and Yang, J.R. 2013. Analysis and prediction of highly effective antiviral peptides based on random forests. PloS One 8: e70166. https://doi: 10.1371/ journal.pone.0070166.

Chepsergon, J., Motaung, T.E. and Moleleki, L.N. 2021. “Core” RXLR effectors in phytopathogenic oomycetes: A promising way to breeding for durable resistance in plants? Virulence 12: 1921-1935.

Drenth, A. and Sendall, B. 2004. Economic impact of Phytophthora diseases in Southeast Asia. Diversity and management of Phytophthora in Southeast Asia. Drenth, A. and Guest, D. I, Southeast Asia, pp. 10-28.

Erwin, D.C. and Ribeiro, O.K. 1996. Phytophthora Diseases Worldwide. American Phytopathological Society (APS Press).

Gamage, D.G., Gunaratne, A., Periyannan, G.R. and Russell, T.G. 2019. Applicability of instability index for in vitro protein stability prediction. Protein and Peptide Letters 26: 339-347.

Gangaraj, K.P. and Rajesh, M.K. 2020. Dataset of dual RNA-sequencing of Phytophthora palmivora infecting coconut (Cocos nucifera L.). Data in Brief 30: doi: 10.1016/ j.dib.2020.105455.

Gangaraj, K. P., Muralikrishna, K.S., Antony, G., Binod Bihari, S., Hegde, V. and Rajesh, M.K. 2021. A rapid in vitro leaf inoculation assay to investigate Phytophthora palmivora–coconut interactions. Journal of Phytopathology 169: 316-328.

Goss, E.M., Press, C.M. and Grünwald, N.J. 2013. Evolution of RXLR-class effectors in the oomycete plant pathogen Phytophthora ramorum. PLoS One 8: e79347.

Guo, Y., Dupont, P.Y., Mesarich, C.H., Yang, B., McDougal, R.L., Panda, P., Dijkwel, P., Studholme, D.J., Sambles, C., Win, J. and Wang, Y. 2020. Functional analysis of RXLR effectors from the New Zealand kauri dieback pathogen Phytophthora agathidicida. Molecular Plant Pathology 21: 1131-1148.

Guruprasad, K., Reddy, B.B. and Pandit, M.W. 1990. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, Design and Selection 4: 155-161.

Huang, G., Liu, Z., Gu, B., Zhao, H., Jia, J., Fan, G., Meng, Y., Du, Y. and Shan, W. 2019. An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. Molecular Plant Pathology 20: 356-371.

Hunziker, L., Tarallo, M., Gough, K., Guo, M., Hargreaves, C., Loo, T.S., McDougal, R.L., Mesarich, C.H. and Bradshaw, R.E. 2021. Apoplastic effector candidates of a foliar forest pathogen trigger cell death in host and non-host plants. Scientific Reports 11: 19958. https://

Jiang, R.H., Tripathy, S., Govers, F. and Tyler, B.M. 2008. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proceedings of the National Academy of Sciences USA 105: 4874-4879.

Judelson, H.S. and Blanco F.A. 2005. The spores of Phytophthora: weapons of the plant destroyer. Nature Reviews Microbiology 3: 47-58.

Kamoun, S. 2006. A catalogue of the effector secretome of plant pathogenic oomycetes. Annual Reviews of Phytopathology 44: 41-60.

Liu, Y., Lan, X., Song, S., Yin, L., Dry, IB, Qu, J., Xiang, J. and Lu, J. 2018. In planta functional analysis and subcellular localisation of the oomycete pathogen Plasmopara viticola candidate RXLR effector repertoire. Frontiers in Plant Science 9: 286.

Magdeldin, S., Yoshida, Y., Li, H., Maeda, Y., Yokoyama, M., Enany, S., Zhang, Y., Xu, B., Fujinaka, H., Yaoita, E. and Sasaki, S. 2012. Murine colon proteome and characterisation of the protein pathways. Bio Data Mining 5: 1-14.

Maqbool, A., Hughes, R.K., Dagdas, Y.F., Tregidgo, N., Zess, E., Belhaj, K., Round, A., Bozkurt, T.O., Kamoun, S. and Banfield, M.J. 2016. Structural basis of host autophagy-related protein 8 (ATG8) binding by the Irish potato famine pathogen effector protein PexRD54. Journal of Biological Chemistry 291: 20270-20282.

McHau, G.R.A. and Coffey, M. D. 1994. Isozyme diversity in Phytophthora palmivora: Evidence for a southeast Asian centre of origin. Mycological Research 98: 1035-1043.

Messaoudi, A., Belguith, H. and Hamida, J.B. 2013. Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1 β-lactamase. Theoretical Biology and Medical Modelling 10: 1-10.

Petre, B., Contreras, M.P., Bozkurt, T.O., Schattat, M.H., Sklenar, J., Schornack, S., Abd-El-Haliem, A., Castells-Graells, R., Lozano-Duran, R., Dagdas, Y. and Menke, F. 2020. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. The Plant Cell 33:1447-1471.

Rehmany, A.P., Gordon, A., Rose, L.E., Allen, R.L., Armstrong, M.R., Whisson, S.C., Kamoun, S., Tyler, B.M., Birch, P.R. and Beynon, J.L. 2005. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. The Plant Cell 17(6): 1839-1850.

Rey, T., Chatterjee, A., Buttay, M., Toulotte, J. and Schornack, S. 2015. Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen. New Phytologist 206: 497-500.

Riolo, M., Aloi, F., La Spada, F., Sciandrello, S., Moricca, S., Santilli, E., Pane, A. and Cacciola, S.O. 2020. Diversity of Phytophthora communities across different types of Mediterranean vegetation in a nature reserve area. Forests 11: 853.

Rose, J.K., Ham, K.S., Darvill, A.G. and Albersheim, P. 2002. Molecular cloning and characterisation of glucanase inhibitor proteins: co-evolution of a counter defense mechanism by plant pathogens. The Plant Cell 14: 1329-1345.

Scanu, B., Jung, T., Masigol, H., Linaldeddu, B.T., Jung, M.H., Brandano, A., Mostowfizadeh-Ghalamfarsa, R., Janoušek, J., Riolo, M. and Cacciola, S.O. 2021. Phytophthora heterospora sp. nov., a new pseudoconidia-producing sister species of P. palmivora. Journal of Fungi 7: 870.

Schornack, S., Huitema, E., Cano, L.M., Bozkurt, T.O., Oliva, R., van Damme, M., Schwizer, S., Raffaele, S., Chaparro Garcia, A., Farrer, R., Segretin, M.E., Bos, J., Haas, B.J., Zody, M.C., Nusbaum, C., Win, J., Thines, M. and Kamoun, S. 2009. Ten things to know about oomycete effectors. Molecular Plant Pathology 10: 795- 803.

Scott, P., Burgess, T. and Hardy, GESJ 2013. Globalisation and Phytophthora. Phytophthora: A Global Perspective. CABI Plant Protection Series, Oxfordshire, UK. pp. 226-232.

Shan, W., Cao, M., Leung, D. and Tyler, B.M. 2004. The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps 1b. Molecular Plant-Microbe Interactions 17: 394-403.

Singh, Y., Patil, V.U., Dhasmana, A., Chakraborty, S.K., Shukla, P.K. and Rawat, S., 2017. In silico study of RXLR effectors of Phytophthora infestans HP-10-31, A2 mating type potato late blight pathogen. International Journal of Advanced Biotechnology and Research 8: 398.

Tian, M., Benedetti, B. and Kamoun, S. 2005. A second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiology 138: 1785-1793.

Tian, M., Huitema, E., Da Cunha, L., Torto-Alalibo, T. and Kamoun, S. 2004. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. Journal of Biological Chemistry 279: 26370-26377.

Tyler, B.M., 2009. Entering and breaking: virulence effector proteins of oomycete plant pathogens. Cellular Microbiology 11: 13-20.

van Poppel, P.M., Guo, J., van de Vondervoort, P.J., Jung, M.W., Birch, P.R., Whisson, S.C. and Govers, F. 2008. The Phytophthora infestans avirulence gene Avr4 encodes an RXLR-dEER effector. Molecular Plant-Microbe Interactions 21: 1460-1470.

Wang, S., McLellan, H., Bukharova, T., He, Q., Murphy, F., Shi, J., Sun, S., van Weymers, P., Ren, Y., Thilliez, G. and Wang, H. 2019. Phytophthora infestans RXLR effectors act in concert at diverse subcellular locations to enhance host colonisation. Journal of Experimental Botany 70: 343-356.

Whisson, S.C., Boevink, P.C., Moleleki, L., Avrova, A.O., Morales, J.G., Gilroy, E.M., Armstrong, M.R., Grouffaud, S., Van West, P., Chapman, S. and Hein, I. 2007. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450: 115-118.

Wiederstein, M. and Sippl, M.J. 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research 35: W407-W410.

Win, J., Krasileva, K.V., Kamoun, S., Shirasu, K., Staskawicz, B.J. and Banfield, M.J. 2012. Sequence divergent RXLR effectors share a structural fold conserved across plant pathogenic oomycete species. PLoS Pathogens 8:e1002400.

Yaeno, T., Li, H., Chaparro-Garcia, A., Schornack, S., Koshiba, S., Watanabe, S., Kigawa, T., Kamoun, S. and Shirasu,

K. 2011. Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. Proceedings of the National Academy of Sciences USA 108: 14682-14687.

Yang, L.N., Liu, H., Duan, G.H., Huang, Y.M., Liu, S., Fang, Z.G., Wu, E.J., Shang, L. and Zhan, J. 2020. The Phytophthora infestans AVR2 effector escapes R2 recognition through effector disordering. Molecular Plant-Microbe Interactions 33: 921-931.

Ye, W., Wang, Y. and Wang, Y. 2015. Bioinformatics analysis reveals abundant short alpha-helices as a common structural feature of oomycete RXLR effector proteins. PLoS One 10: e0135240. https://doi: 10.1371/journal.pone.0135240.

Yoshida, K., Schuenemann, V.J., Cano, L.M., Pais, M., Mishra, B., Sharma, R., Lanz, C., Martin, F.N., Kamoun, S., Krause, J. and Thines, M. 2013. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. Elife 2: e00731.

Zhao, L., Zhang, X., Zhang, X., Song, W., Li, X., Feng, R., Yang, C., Huang, Z. and Zhu, C., 2018. Crystal structure of the RXLR effector PcRXLR12 from Phytophthora capsici. Biochemical and Biophysical Research Communications 503: 1830-1835.

Zuluaga, A.P., Vega-Arreguín, J.C., Fei, Z., Matas, A.J., Patev, S., Fry, W.E. and Rose, J.K. 2016. Analysis of the tomato leaf transcriptome during successive hemibiotrophic stages of a compatible interaction with the oomycete pathogen Phytophthora infestans. Molecular Plant Pathology 17: 42-54.



How to Cite

Gangaraj, K., & Rajesh, M. (2022). Molecular characterisation and structural assessment of an RXLR effector from Phytophthora palmivora, the coconut bud rot pathogen. Journal of Plantation Crops, 50(2), 100–109.



Research Articles