Phyllanthus niruri leaf extract and its mediated silver nanoparticles as anticancer agent against neuroblastoma cancer (SH-SY5Y) cell lines
DOI:
https://doi.org/10.25081/jp.2025.v17.9691Keywords:
Phyllanthus niruri, Silver nanoparticles, Anticancer study, SH-SY5Y Neuroblastoma cell lineAbstract
Silver nanoparticles (AgNPs) have enormous potential in numerous medical uses, such as molecular imaging, drug delivery, and treatment of different diseases, including cancer. Among many AgNP syntheses, the eco-friendly production of AgNPs utilising plants has many advantages including, sustainable and inexpensive process. Further, it provides safer and more effective treatment of numerous diseases. In this research, Phyllanthus niruri (PN) leaf extract was utilised for the biological synthesis of AgNPs. UV-Vis spectroscopy, ATR-FTIR spectroscopy, FESEM-EDX, and TEM were applied to analyse the synthesised P. niruri - mediated silver nanoparticles (PN-AgNPs). The images from FESEM and TEM analysis show the AgNPs are in spherical shapes with surface sizes of 11 to 63 nm and 12 to 24 nm, respectively. The EDX spectrum indicates that the nanoparticles contain 88.46% silver. PN and PN-AgNPs were further investigated to see whether they have any anticancer properties against the SH-SY5Y neuroblastoma cell line. Both PN and PN-AgNPs were effective in killing cancer cells, but the results indicated that PN-AgNPs had higher cytotoxic effects than PN.
Downloads
References
Aadil, K. R., Pandey, N., Mussatto, S. I., & Jha, H. (2019). Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity. Journal of Environmental Chemical Engineering, 7(5), 103296. https://doi.org/10.1016/j.jece.2019.103296
Abdel-Sattar, O. E., Allam, R. M., Al-Abd, A. M., Avula, B., Katragunta, K., Khan, I. A., El-Desoky, A. M., Mohamed, S. O., El-Halawany, A., Abdel-Sattar, E., & Meselhy, M. R. (2023). Cytotoxic and chemomodulatory effects of Phyllanthus niruri in MCF-7 and MCF-7ADR breast cancer cells. Scientific Reports, 13(1), 2683. https://doi.org/10.1038/s41598-023-29566-0
Amalorpavamary, G., Dineshkumar, G., & Jayaseelan, K. (2019). Ecofriendly synthesis of silver nanoparticles from leaves extract of Phyllanthus niruri (L.) and their antibacterial properties. Journal of Drug Delivery and Therapeutics, 9(1-s), 196-200. https://doi.org/10.22270/jddt.v9i1-s.2304
Anantharaman, S., Rego, R., Muthakka, M., Anties, T., & Krishna, H. (2020). Andrographis paniculata-mediated synthesis of silver nanoparticles: antimicrobial properties and computational studies. SN Applied Sciences, 2(9), 1618. https://doi.org/10.1007/s42452-020-03394-7
Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2019). The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules, 25(1), 112. https://doi.org/10.3390/molecules25010112
Chia, S. Y., Khor, B.-K., Tay, Y. J., Liew, K. F., & Lee, C.-Y. (2023). Discovery of blood–brain barrier permeant amine-functionalized aurones as inhibitors of activated microglia. Bioorganic Chemistry, 135, 106509. https://doi.org/10.1016/j.bioorg.2023.106509
Damasuri, A. R., Sholikhah, E. N., & Mustofa. (2020). Cytotoxicity of ((E)-1-(4-aminophenyl)-3-phenylprop-2-en-1-one)) on HeLa cell line. Indonesian Journal of Pharmacology and Therapy, 1(2), 54-59. https://doi.org/10.22146/ijpther.606
Dayem, A, A., Lee, S., Choi, H., & Cho, S. G. (2018). Silver nanoparticles: Two-faced neuronal differentiation-inducing material in neuroblastoma (SH-SY5Y) cells. International Journal of Molecular Sciences, 19(5), 1470. https://doi.org/10.3390/ijms19051470
Devi, B. V., Rajeshkumar, S., Lakshmi, T., Roy, A., Sayed, E., & Mohammed, H. (2020). Anti-inflammatory activity of silver nanoparticles synthesised using Andrographis paniculata and Phyllanthus niruri. Plant Cell Biotechnology and Molecular Biology, 21(25-26), 96-104.
Duan, H., Wang, D., & Li, Y. (2015). Green chemistry for nanoparticle synthesis. Chemical Society Reviews, 44(16), 5778-5792. https://doi.org/10.1039/C4CS00363B
Elsupikhe, R. F., Shameli, K., Ahmad, M. B., Ibrahim, N. A., & Zainudin, N. (2015). Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Research Letters, 10, 302. https://doi.org/10.1186/s11671-015-0916-1
Gajanan, K., & Tijare, S. N. (2018). Applications of nanomaterials. Materials Today: Proceedings, 5(1), 1093-1096. https://doi.org/10.1016/j.matpr.2017.11.187
Gomathi, A. C., Xavier Rajarathinam, S. R., Mohammed Sadiq, A., & Rajeshkumar, S. (2020). Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. Journal of Drug Delivery Science and Technology, 55, 101376. https://doi.org/10.1016/j.jddst.2019.101376
Gurunathan, S., Han, J. W., Kwon, D.-N., & Kim, J.-H. (2014). Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Research Letters, 9(1), 373. https://doi.org/10.1186/1556-276X-9-373
Hermansyah, D., Paramita, D. A., & Amalina, N. D. (2023). Combination Curcuma longa and Phyllanthus niruri extract potentiate antiproliferative in triple-negative breast cancer MDA-MB-231 cells. Asian Pacific Journal of Cancer Prevention, 24(5), 1495-1505. https://doi.org/10.31557/APJCP.2023.24.5.1495
Kartini, K., Alviani, A., Anjarwati, D., Fanany, A. F., Sukweenadhi, J., & Avanti, C. (2020). Process optimization for green synthesis of silver nanoparticles using Indonesian medicinal plant extracts. Processes, 8(8), 998. https://doi.org/10.3390/pr8080998
Kaur, R., Akhtar, N., Choudhury, N., & Kumar, N. (2017). Phytochemical screening of Phyllanthus niruri collected from Kerala region and its antioxidant and antimicrobial potentials. Journal of Pharmaceutical Sciences and Research, 9(9), 1627-1632.
Kotaru, M., & Korimelli, S. (2023). Evaluation of anti-diabetic activity of silver nanoparticles synthesized from ethanolic extract of Phyllanthus niruri on Wistar rats. Journal of Drug Delivery and Therapeutics, 13(6), 83-88. https://doi.org/10.22270/jddt.v13i6.6098
Kovács, D., Igaz, N., Gopisetty, M. K., & Kiricsi, M. (2022). Cancer therapy by silver nanoparticles: Fiction or reality? International Journal of Molecular Sciences, 23(2), 839. https://doi.org/10.3390/ijms23020839
Kumar, S., Khan, H. M., Khan, M. A., Jalal, M., Ahamad, S., Shahid, M., Husain, F. M., Arshad, M., & Adil, M. (2023). Broad-spectrum antibacterial and antibiofilm activity of biogenic silver nanoparticles synthesized from leaf extract of Phyllanthus niruri. Journal of King Saud University - Science, 35(8), 102904. https://doi.org/10.1016/j.jksus.2023.102904
Md Zin, N. F. H., Ooi, S. Y. S., Khor, B.-K., Chear, N. J.-Y., Tang, W. K., Siu, C.-K., Razali, M. R., Haque, R. A., & Yam, W. (2022). Cytotoxicity of asymmetric mononuclear silver(I)-N-heterocyclic carbene complexes against human cervical cancer: Synthesis, crystal structure, DFT calculations and effect of substituents. Journal of Organometallic Chemistry, 976, 122439. https://doi.org/10.1016/j.jorganchem.2022.122439
Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97-118. https://doi.org/10.17509/ijost.v4i1.15806
Park, J. H., Gurunathan, S., Choi, Y.-J., Han, J. W., Song, H., & Kim, J.-H. (2017). Silver nanoparticles suppress brain-derived neurotrophic factor-induced cell survival in the human neuroblastoma cell line SH-SY5Y. Journal of Industrial and Engineering Chemistry, 47, 62-73. https://doi.org/10.1016/j.jiec.2016.11.015
Paul, S., Patra, D., & Kundu, R. (2019). Lignan enriched fraction (LRF) of Phyllanthus amarus promotes apoptotic cell death in human cervical cancer cells in vitro. Scientific Reports, 9(1), 14950. https://doi.org/10.1038/s41598-019-51480-7
Singh, P., Kim, Y.-J., Zhang, D., & Yang, D.-C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7), 588-599. https://doi.org/10.1016/j.tibtech.2016.02.006f
Takáč, P., Michalková, R., Čižmáriková, M., Bedlovičová, Z., Balážová, Ľ., & Takáčová, G. (2023). The role of silver nanoparticles in the diagnosis and treatment of cancer: Are there any perspectives for the future? Life, 13(2), 466. https://doi.org/10.3390/life13020466
Wu, Q., Miao, W., Zhang, Y., Gao, H., & Hui, D. (2020). Mechanical properties of nanomaterials: A review. Nanotechnology Reviews, 9(1), 259-273. https://doi.org/10.1515/ntrev-2020-0021
Zhang, X.-F., Liu, Z.-G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534. https://doi.org/10.3390/ijms17091534
Published
How to Cite
Issue
Section
Copyright (c) 2025 Nur Shuhada Binti Zakaria, Boon-Keat Khor, Nur Azimah Binti Rosdi, Nurul Ashikin Binti Abu Bakar, Nurul Farah Anis Binti Johari, Lifi Francis, Vikneswaran Murugaiyah, Thangamani Arumugam, Pandian Bothi Raja

This work is licensed under a Creative Commons Attribution 4.0 International License.