Solvent polarity-driven phytochemical profiling and antioxidant evaluation of Indian Persimmon (Diospyros kaki Thunb.) fruit extracts

Authors

  • Magdalin Sylvia Singarayar Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu, India
  • Ajithan Chandrasekaran Department of Horticulture, Chungnam National University, Daejeon-34134, Republic of Korea
  • Vivek Neethirajan Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu, India
  • Dhivyadharshini Balasundaram Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu, India
  • Veeramurugan Veerasamy Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu, India
  • Sivasudha Thilagar Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu, India

DOI:

https://doi.org/10.25081/jp.2025.v17.9612

Keywords:

Antioxidants, Diospyros kaki, Extractions, Phytochemicals, Solvents

Abstract

The present study investigates the phytochemical composition and antioxidant potential of Indian Persimmon (Diospyros kaki Thunb.) extracts obtained using ten different solvents with varying polarity. Soxhlet extraction was employed to obtain the extracts, with hydroethanolic solvent yielding the highest extractable content. Qualitative phytochemical screening revealed the presence of key bioactive compounds, including flavonoids, phenolics, alkaloids, terpenoids, saponins, tannins and significant levels of sugar across all extracts. Quantitative estimations indicated that Acetone extract of D. kaki (7.23±0.5 mg GAE/g) and Ethyl acetate extract of D. kaki (4.54±0.01 mg QE/g) were particularly rich in total phenolics and flavonoids, while Aqueous extract of D. kaki (1016±0.36 mg GE/g) and Hydroethanol extract of D. kaki (1015±0.79 mg GE/g) exhibited higher carbohydrate content. Uronic acid and reducing sugar levels were also prominent in the Acetone extract of D. kaki (395.14±0.32 & 1255±2 mg GluA/g), suggesting efficient extraction of pectic and simple sugar fractions. Antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assays. Among the tested extracts, Ethyl acetate extract of D. kaki (28.96 & 33.19 μg/mL) and Acetone extract of D. kaki (127.6 & 18.43 μg/mL) demonstrated notable antioxidant capacities, with IC50 values closely approaching that of the standard BHT in both assays. These findings underscore the influence of solvent polarity on phytochemical recovery and bioactivity, with mid-polar solvents proving most effective in extracting antioxidant constituents. The results highlight D. kaki fruit as a promising natural source of antioxidants with potential therapeutic applications, particularly in managing oxidative stress-related disorders such as colon cancer.

Downloads

Download data is not yet available.

References

Akar, Z., Küçük, M., & Doğan, H. (2017). A new colorimetric DPPH • scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 640-647. https://doi.org/10.1080/14756366.2017.1284068

Akomeng, N., & Adusei, S. (2021). Organic solvent extraction and spectrophotometric quantification of total phenolic content of soil. Heliyon, 7(11), e08388. https://doi.org/10.1016/j.heliyon.2021.e08388

Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200-214. https://doi.org/10.1016/j.crfs.2021.03.011

Al-hameed, S. A., & Mohammed, A. M. (2022). Novel green synthesis of Fe2O3 nanoparticles using persimmon extract and study their anti-cancer and anti-bacterial activity. Journal of Pharmaceutical Negative Results, 13(3), 958-967. https://doi.org/10.47750/pnr.2022.13.03.150

Alhmoud, J. F., Woolley, J. F., Al Moustafa, A.-E., & Malki, M. I. (2020). DNA Damage/Repair Management in Cancers. Cancers, 12(4), 1050. https://doi.org/10.3390/cancers12041050

Ali Redha, A. (2021). Review on extraction of phenolic compounds from natural sources using green deep eutectic solvents. Journal of Agricultural and Food Chemistry, 69(3), 878-912. https://doi.org/10.1021/acs.jafc.0c06641

Ali, A. M. A., El-Nour, M. E. M., & Yagi, S. M. (2018). Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. Journal of Genetic Engineering and Biotechnology, 16(2), 677-682. https://doi.org/10.1016/j.jgeb.2018.03.003

Andrés, C. M. C., Pérez de la Lastra, J. M., Juan, C. A., Plou, F. J., & Pérez-Lebeña, E. (2023a). Polyphenols as antioxidant/pro-oxidant compounds and donors of reducing species: relationship with human antioxidant metabolism. Processes, 11(9), 2771. https://doi.org/10.3390/pr11092771

Ayala, J. R., Montero, G., Coronado, M. A., García, C., Curiel-Alvarez, M. A., León, J. A., Sagaste, C. A., & Montes, D. G. (2021). Characterization of orange peel waste and valorization to obtain reducing sugars. Molecules, 26(5), 1348. https://doi.org/10.3390/molecules26051348

Ayele, D. T., Akele, M. L., & Melese, A. T. (2022). Analysis of total phenolic contents, flavonoids, antioxidant and antibacterial activities of Croton macrostachyus root extracts. BMC Chemistry, 16, 30. https://doi.org/10.1186/s13065-022-00822-0

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C.-M. (2022). Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules, 27(4), 1326. https://doi.org/10.3390/molecules27041326

Bedzo, O. K. K., Gottumukkala, L. D., Sasso, G. Lo, Kaminski, K., Schlage, W., Goffman, F., Ivanov, N., Hoeng, J., & Hayes, D. J. (2024). Process development for efficient pectin extraction from tobacco residues and its characterisation. Biomass Conversion and Biorefinery, 14(23), 29481-29501. https://doi.org/10.1007/s13399-023-04750-4

Bessada, S. M. F., Barreira, J. C. M., & Oliveira, M. B. P. P. (2015). Asteraceae species with most prominent bioactivity and their potential applications: A review. Industrial Crops and Products, 76, 604-615. https://doi.org/10.1016/j.indcrop.2015.07.073

Choe, J.-H., Kim, H.-Y., Kim, Y.-J., Yeo, E.-J., & Kim, C.-J. (2014). Antioxidant activity and phenolic content of Persimmon peel extracted with different levels of ethanol. International Journal of Food Properties, 17(8), 1779-1790. https://doi.org/10.1080/10942912.2012.731460

Dave, N., Varadavenkatesan, T., Singh, R. S., Giri, B. S., Selvaraj, R., & Vinayagam, R. (2021). Evaluation of seasonal variation and the optimization of reducing sugar extraction from Ulva prolifera biomass using thermochemical method. Environmental Science and Pollution Research, 28(42), 58857-58871. https://doi.org/10.1007/s11356-021-12609-2

De Martino, L., Mencherini, T., Mancini, E., Aquino, R. P., De Almeida, L. F. R., & De Feo, V. (2012). In vitro phytotoxicity and antioxidant activity of selected flavonoids. International Journal of Molecular Sciences, 13(5), 5406-5419. https://doi.org/10.3390/ijms13055406

Di Carlo, E., & Sorrentino, C. (2024). Oxidative stress and age-related tumors. Antioxidants, 13(9), 1109. https://doi.org/10.3390/antiox13091109

Dong, Y., Liu, C., Gong, B., Yang, X., Wu, K., Yue, Z., & Xu, Y. (2024). Analysis of the correlation between Persimmon fruit-sugar components and taste traits from germplasm evaluation. International Journal of Molecular Sciences, 25(14), 7803. https://doi.org/10.3390/ijms25147803

Edo, G. I., Nwachukwu, S. C., Ali, A. B. M., Yousif, E., Jikah, A. N., Zainulabdeen, K., Ekokotu, H. A., Isoje, E. F., Igbuku, U. A., Opiti, R. A., Akpoghelie, P. O., Owheruo, J. O., & Essaghah, A. E. A. (2025). A review on the composition, extraction and applications of phenolic compounds. Ecological Frontiers, 45(1), 7-23. https://doi.org/10.1016/j.ecofro.2024.09.008

Floegel, A., Kim, D.-O., Chung, S.-J., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, 24(7), 1043-1048. https://doi.org/10.1016/j.jfca.2011.01.008

Fraga-Corral, M., García-Oliveira, P., Pereira, A. G., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M. A., & Simal-Gandara, J. (2020). Technological application of tannin-based extracts. Molecules, 25(3), 614. https://doi.org/10.3390/molecules25030614

García-Pérez, P., Tomas, M., Rivera-Pérez, A., Patrone, V., Giuberti, G., Cervini, M., Capanoglu, E., & Lucini, L. (2024). Pectin conformation influences the bioaccessibility of cherry laurel polyphenols and gut microbiota distribution following in vitro gastrointestinal digestion and fermentation. Food Chemistry, 430, 137054. https://doi.org/10.1016/j.foodchem.2023.137054

Gęgotek, A., & Skrzydlewska, E. (2022). Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants, 11(10), 1993. https://doi.org/10.3390/antiox11101993

Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., & Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378, 131918. https://doi.org/10.1016/j.foodchem.2021.131918

Giri, S., Kshirod Kumar Dash, Bhagya Raj, G., Kovács, B., & Ayaz Mukarram, S. (2024). Ultrasound assisted phytochemical extraction of persimmon fruit peel: Integrating ANN modeling and genetic algorithm optimization. Ultrasonics Sonochemistry, 102, 106759. https://doi.org/10.1016/j.ultsonch.2024.106759

González, C. M., Hernando, I., & Moraga, G. (2021). In Vitro and In Vivo Digestion of Persimmon and Derived Products: A Review. Foods, 10(12), 3083. https://doi.org/10.3390/foods10123083

González, C. M., Llorca, E., Quiles, A., Hernando, I., & Moraga, G. (2022). An in vitro digestion study of tannins and antioxidant activity affected by drying “Rojo Brillante” persimmon. LWT, 155, 112961. https://doi.org/10.1016/j.lwt.2021.112961

Han, Z., Ren, W., Liu, X., Lin, N., Qu, J., Duan, X., & Liu, B. (2024). Hypoglycemic activity of immature persimmon (Diospyros kaki Thunb.) extracts and its inhibition mechanism for α-amylase and α-glucosidase. International Journal of Biological Macromolecules, 257, 128616. https://doi.org/10.1016/j.ijbiomac.2023.128616

Hao, J.-W., Wang, W.-T., Chen, N.-D., & Shen, Y. (2025). Identification of 13 natural antioxidants in green calyx plum using AAPH, ABTS, and FRAP-coupled HPLC-DAD via QTOF-MS/MS. Food Chemistry, 477, 143568. https://doi.org/10.1016/j.foodchem.2025.143568

Hussen, E. M., & Endalew, S. A. (2023). In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina. BMC Complementary Medicine and Therapies, 23(1), 146. https://doi.org/10.1186/s12906-023-03923-y

Hwang, K.-A., Hwang, Y.-J., Hwang, I. G., Song, J., & Cho, S. M. (2017). Cholesterol-lowering effect of astringent persimmon fruits (Diospyros kaki Thunb.) extracts. Food Science and Biotechnology, 26(1), 229-235. https://doi.org/10.1007/s10068-017-0031-4

Iqbal, I., Wilairatana, P., Saqib, F., Nasir, B., Wahid, M., Latif, M. F., Iqbal, A., Naz, R., & Mubarak, M. S. (2023). Plant polyphenols and their potential benefits on cardiovascular health: A review. Molecules, 28(17), 6403. https://doi.org/10.3390/molecules28176403

Iqbal, M. J., Kabeer, A., Abbas, Z., Siddiqui, H. A., Calina, D., Sharifi-Rad, J., & Cho, W. C. (2024). Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Communication and Signaling, 22, 7. https://doi.org/10.1186/s12964-023-01398-5

Jang, I.-C., Oh, W.-G., Ahn, G.-H., Lee, J.-H., & Lee, S.-C. (2011). Antioxidant activity of 4 cultivars of persimmon fruit. Food Science and Biotechnology, 20, 71-77. https://doi.org/10.1007/s10068-011-0010-0

Kaur, R., Yadav, P., Thukral, A. K., Sharma, A., Bhardwaj, R., Alyemeni, M. N., Wijaya, L., & Ahmad, P. (2018). Castasterone and citric acid supplementation alleviates cadmium toxicity by modifying antioxidants and organic acids in Brassica juncea. Journal of Plant Growth Regulation, 37, 286-299. https://doi.org/10.1007/s00344-017-9727-1

Kim, M. Y., Shin, M.-R., Seo, B.-I., Noh, J. S., & Roh, S.-S. (2020). Young Persimmon fruit extract suppresses obesity by modulating lipid metabolism in white Adipose tissue of Obese mice. Journal of Medicinal Food, 23(3), 273-280. https://doi.org/10.1089/jmf.2019.4557

Lee, J.-E., Jayakody, J., Kim, J.-I., Jeong, J.-W., Choi, K.-M., Kim, T.-S., Seo, C., Azimi, I., Hyun, J., & Ryu, B. (2024). The Influence of Solvent Choice on the Extraction of Bioactive Compounds from Asteraceae: A Comparative Review. Foods, 13(19), 3151. https://doi.org/10.3390/foods13193151

Lee, J.-H., Lee, Y.-B., Seo, W.-D., Kang, S.-T., Lim, J.-W., & Cho, K.-M. (2012). Comparative Studies of Antioxidant Activities and Nutritional Constituents of Persimmon Juice (Diospyros kaki L. cv. Gapjubaekmok). Preventive Nutrition and Food Science, 17(2), 141-151. https://doi.org/10.3746/pnf.2012.17.2.141

Lekha, P. K., & Lonsane, B. K. (1997). Production and Application of Tannin Acyl Hydrolase: State of the Art. Advances in Applied Microbiology, 44, 215-260. https://doi.org/10.1016/S0065-2164(08)70463-5

López-Bermudo, L., Moreno-Chamba, B., Salazar-Bermeo, J., Hayward, N. J., Morris, A., Duncan, G. J., Russell, W. R., Cárdenas, A., Ortega, Á., Escudero-López, B., Berná, G., Martí Bruña, N., Duncan, S. H., Neacsu, M., & Martin, F. (2024). Persimmon Fiber-Rich Ingredients Promote Anti-Inflammatory Responses and the Growth of Beneficial Anti-Inflammatory Firmicutes Species from the Human Colon. Nutrients, 16(15), 2518. https://doi.org/10.3390/nu16152518

Maheshwari, N., & Sharma, M. C. (2023). Anticancer Properties of Some Selected Plant Phenolic Compounds: Future Leads for Therapeutic Development. Journal of Herbal Medicine, 42, 100801. https://doi.org/10.1016/j.hermed.2023.100801

Mal, S., & Pal, D. (2021). Tannins and Polyphenols Extracted from Natural Plants and Their Versatile Application. In D. Pal & A. K. Nayak (Eds.), Bioactive Natural Products for Pharmaceutical Applications (pp. 715-757) Switzerland: Springer. https://doi.org/10.1007/978-3-030-54027-2_21

Menegazzo, M. L., & Fonseca, G. G. (2019). Biomass recovery and lipid extraction processes for microalgae biofuels production: A review. Renewable and Sustainable Energy Reviews, 107, 87-107. https://doi.org/10.1016/j.rser.2019.01.064

Njoya, E. M. (2021). Medicinal plants, antioxidant potential, and cancer. In V. R. Preedy & V. B. Patel (Eds.), Cancer (pp. 349-357). Massachusetts, US: Academic Press. https://doi.org/10.1016/B978-0-12-819547-5.00031-6

Okur, I., Namlı, S., Oztop, M. H., & Alpas, H. (2023). High-Pressure-Assisted Extraction of Phenolic Compounds from Olive Leaves: optimization and Comparison with Conventional Extraction. ACS Food Science & Technology, 3(1), 161-169. https://doi.org/10.1021/acsfoodscitech.2c00346

Oshima, T., Kato, K., & Imaizumi, T. (2021). Effects of blanching on drying characteristics, quality, and pectin nanostructures of dried cut-persimmons. LWT, 143, 111094. https://doi.org/10.1016/j.lwt.2021.111094

Ozogul, Y., Ucar, Y., Tadesse, E. E., Rathod, N., Kulawik, P., Trif, M., Esatbeyoglu, T., & Ozogul, F. (2025). Tannins for food preservation and human health: A review of current knowledge. Applied Food Research, 5(1), 100738. https://doi.org/10.1016/j.afres.2025.100738

Peng, H., Gao, Y., Zeng, C., Hua, R., Guo, Y., Wang, Y., & Wang, Z. (2024). Effects of Maillard reaction and its product AGEs on aging and age-related diseases. Food Science and Human Wellness, 13(3), 1118-1134. https://doi.org/10.26599/FSHW.2022.9250094

Polat, A., Taskin, O., & Izli, N. (2024). Assessment of freeze, continuous, and intermittent infrared drying methods for sliced persimmon. Journal of Food Science, 89(4), 2332-2346. https://doi.org/10.1111/1750-3841.16994

Rauf, A., Imran, M., Abu-Izneid, T., Iahtisham-Ul-Haq, Patel, S., Pan, X., Naz, S., Sanches Silva, A., Saeed, F., & Rasul Suleria, H. A. (2019). Proanthocyanidins: A comprehensive review. Biomedicine & Pharmacotherapy, 116, 108999. https://doi.org/10.1016/j.biopha.2019.108999

Rodríguez-Arce, E., & Saldías, M. (2021). Antioxidant properties of flavonoid metal complexes and their potential inclusion in the development of novel strategies for the treatment against neurodegenerative diseases. Biomedicine & Pharmacotherapy, 143, 112236. https://doi.org/10.1016/j.biopha.2021.112236

Schaich, K. M., Tian, X., & Xie, J. (2015). Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. Journal of Functional Foods, 14, 111-125. https://doi.org/10.1016/j.jff.2015.01.043

Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., El Beyrouthy, M., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., … Sharifi-Rad, J. (2020). Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Frontiers in Physiology, 11, 694. https://doi.org/10.3389/fphys.2020.00694

Shin, H. Y., Hwang, K. C., Mi, X.-J., Moon, S.-K., Kim, Y.-J., & Kim, H. (2022). Rhamnogalacturonan I‐rich polysaccharide isolated from fermented persimmon fruit increases macrophage‐stimulatory activity by activating MAPK and NF‐κB signaling. Journal of the Science of Food and Agriculture, 102(7), 2846-2854. https://doi.org/10.1002/jsfa.11625

Siddeeg, A., AlKehayez, N. M., Abu-Hiamed, H. A., Al-Sanea, E. A., & AL-Farga, A. M. (2021). Mode of action and determination of antioxidant activity in the dietary sources: An overview. Saudi Journal of Biological Sciences, 28(3), 1633-1644. https://doi.org/10.1016/j.sjbs.2020.11.064

Singh, A., Mehta, S., Yadav, S., Nagar, G., Ghosh, R., Roy, A., Chakraborty, A., & Singh, I. K. (2022). How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants. International Journal of Molecular Sciences, 23(4), 1995. https://doi.org/10.3390/ijms23041995

Speir, T. W., & Ross, D. J. (1981). A comparison of the effects of air-drying and acetone dehydration on soil enzyme activities. Soil Biology and Biochemistry, 13(3), 225-229. https://doi.org/10.1016/0038-0717(81)90025-0

Sun, Y., Ji, X., Cui, J., Mi, Y., Zhang, J., & Guo, Z. (2022). Synthesis, Characterization, and the Antioxidant Activity of Phenolic Acid Chitooligosaccharide Derivatives. Marine Drugs, 20(8), 489. https://doi.org/10.3390/md20080489

Taguiam, J. D. W., Billones-Baaijens, R., Stodart, B. J., Steel, C. C., Fuss, A. M., & Savocchia, S. (2024). A threat to the persimmon industry: A review of persimmon (Diospyros species) dieback. Crop Protection, 180, 106672. https://doi.org/10.1016/j.cropro.2024.106672

Tomasi, I. T., Machado, C. A., Boaventura, R. A. R., Botelho, C. M. S., & Santos, S. C. R. (2022). Tannin-based coagulants: Current development and prospects on synthesis and uses. Science of The Total Environment, 822, 153454. https://doi.org/10.1016/j.scitotenv.2022.153454

Tourabi, M., Metouekel, A., ghouizi, A. E. L., Jeddi, M., Nouioura, G., Laaroussi, H., Hosen, M. E., Benbrahim, K. F., Bourhia, M., Salamatullah, A. M., Nafidi, H.-A., Wondmie, G. F., Lyoussi, B., & Derwich, E. (2023). Efficacy of various extracting solvents on phytochemical composition, and biological properties of Mentha longifolia L. leaf extracts. Scientific Reports, 13, 18028. https://doi.org/10.1038/s41598-023-45030-5

Widjajakusuma, E. C., Jonosewojo, A., Hendriati, L., Wijaya, S., Ferawati, Surjadhana, A., Sastrowardoyo, W., Monita, N., Muna, N. M., Fajarwati, R. P., Ervina, M., Esar, S. Y., Soegianto, L., Lang, T., & Heriyanti, C. (2019). Phytochemical screening and preliminary clinical trials of the aqueous extract mixture of Andrographis paniculata (Burm. f.) Wall. ex Nees and Syzygium polyanthum (Wight.) Walp leaves in metformin treated patients with type 2 diabetes. Phytomedicine, 55, 137-147. https://doi.org/10.1016/j.phymed.2018.07.002

Xiang, Y., Xiang, M., Mao, Y., Huang, L., He, Q., & Dong, Y. (2025). Insights into structure-antioxidant activity relationships of polyphenol-phospholipid complexes: The effect of hydrogen bonds formed by phenolic hydroxyl groups. Food Chemistry, 485, 144471. https://doi.org/10.1016/j.foodchem.2025.144471

Yokozawa, T., Park, C. H., Noh, J. S., & Roh, S. S. (2014). Role of Oligomeric Proanthocyanidins Derived from an Extract of Persimmon Fruits in the Oxidative Stress-Related Aging Process. Molecules, 19(5), 6707-6726. https://doi.org/10.3390/molecules19056707

Zahra, M., Abrahamse, H., & George, B. P. (2024). Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants, 13(8), 922. https://doi.org/10.3390/antiox13080922

Zhao, J., Chen, Z., Li, L., & Sun, B. (2024). UHPLC-MS/MS analysis and protective effects on neurodegenerative diseases of phenolic compounds in different parts of Diospyros kaki L. cv. Mopan. Food Research International, 184, 114251. https://doi.org/10.1016/j.foodres.2024.114251

Published

12-07-2025

How to Cite

Singarayar, M. S., Chandrasekaran, A., Neethirajan, V., Balasundaram, D., Veerasamy, V., & Thilagar, S. (2025). Solvent polarity-driven phytochemical profiling and antioxidant evaluation of Indian Persimmon (Diospyros kaki Thunb.) fruit extracts. Journal of Phytology, 17, 91–104. https://doi.org/10.25081/jp.2025.v17.9612

Issue

Section

Articles