Phenolic profile, antioxidant, anti-inflammatory and anticancer activities of Telephium imperati L.

Authors

  • Bachir Benarba Laboratory Research on Biological Systems and Geomatics, Mustapha Stambouli University of Mascara, Algeria
  • Khadidja Belhouala Laboratory Research on Biological Systems and Geomatics, Mustapha Stambouli University of Mascara, Algeria
  • Cansu Korkmaz Department of Biology, Faculty of Science, MuğlaSıtkıKoçman University, 48000, Muğla, Turkey
  • Meltem Taş Küçükaydın Department of Chemistry, Faculty of Science, MuğlaSıtkıKoçman University, 48000, Muğla, Turkey
  • Selçuk Küçükaydın Department of Medical Services and Techniques, Köyceğiz Vocational School of Health Services, MuğlaSıtkıKoçman University, 48800, Köyceğiz/Muğla, Turkey
  • Mehmet Emin Duru Department of Chemistry, Faculty of Science, MuğlaSıtkıKoçman University, 48000, Muğla, Turkey

DOI:

https://doi.org/10.25081/jp.2024.v16.9334

Keywords:

Telephium imperati L., Phenolics, MTT assay, Antioxidant, Anti-inflammatory

Abstract

Telephium imperati L. is one of the most valuable spices used by Algerians for food and different medicinal purposes. Here, we report the main phenolic compounds of T. imperati that grows in arid regions and its antioxidant, anti-inflammatory, and anticancer activities. The phenolic profiles of methanolic and aqueous extracts of T. imperati roots was obtained using HPLC-DAD, whereas antioxidant activity was evaluated using 2.2-diphenyl-1-picrylhydrazyl (DPPH), potassium ferricyanide, and Hydrogen peroxide (H2O2) assays. Moreover, the anti-inflammatory activity was investigated by measuring the level of protection of the human red blood cell (HRBC) membrane against hypotonicity-induced lysis. The anticancer activity was evaluated using the MTT assay against three human cancer cell lines (HT-29, PC-3, A-549) and one non-tumorigenic (CCD18-Co) cells. Our results showed that the methanolic extract was rich in phenols (493.17±0.0 mg GAE/g), flavonoids (271.56±0.1 mg QE/g), and tannins (106.50±2.3 mg CE/g). The HPLC-DAD analysis revealed that caffeic acid (78.61 mg/g), ferulic acid (49.12 mg/g), rosmarinic acid (42.80 mg/g), coumarin (39.87 mg/g), rutin (37.68 mg/g), myricetin (25.62 mg/g), syringic acid (18.90 mg/g), and quercetin (18.65 mg/g) were mainly present in T. imperati extracts. Although the DPPH assay showed slight antioxidant activity for both extracts, the methanolic extract exhibited significant potent anti-inflammatory action in all in vitro tests, protecting HRBC damage and BSA denaturation at rates of 80.18 and 97.62%, respectively. Likewise, the methanolic extract exhibited an important anticancer activity against the HT-29 and A-549 cell lines, with IC50 values ranging from 1.85 to 2.00 log10 μg/mL. Interestingly, no toxic effects on CCD18-Co were observed. Therefore, the present study revealed that T. imperati root extracts are rich in phenolic compounds and could be a promising source of anti-inflammatory and anticancer molecules.

Downloads

Download data is not yet available.

References

Adedapo, A., Jimoh, F., & Afolayan, A. (2011). Comparison of the nutritive value and biological activities of the acetone, methanol and water extracts of the leaves of Bidens pilosa and Chenopodium album. Acta Poloniae Pharmaceutica, 68(1), 83-92.

Ahmed, D., Fatima, K., & Saeed, R. (2014). Analysis of Phenolic and Flavonoid Contents, and the Anti-Oxidative Potential and Lipid Peroxidation Inhibitory Activity of Methanolic Extract of Carissa opaca Roots and Its Fractions in Different Solvents. Antioxidants, 3(4), 671-683. https://doi.org/10.3390/antiox3040671

Alqethami, A., & Aldhebiani, A. Y. (2021). Medicinal plants used in Jeddah, Saudi Arabia: Phytochemical Screening. Saudi Journal of Biological Sciences, 28(1), 805-812. https://doi.org/10.1016/j.sjbs.2020.11.013

Asif, M. (2015). Chemistry and antioxidant activity of plants containing some phenolic compounds. Chemistry International, 1(1), 35-52.

Azeem, A. K., Dilip, C., Prasanth, S. S., Shahmia, V. J. H., Sajeev, K., Naseera, C. (2010). Anti-inflammatory activity of the glandular extracts of Thunnus Alalunga. Asian Pacific Journal of Tropical Medicine, 3(10), 794-796. https://doi.org/10.1016/s1995-7645(10)60190-3

Belhouala, K., & Benarba, B. (2021). Medicinal plants used by traditional healers in Algeria: A multiregional ethnobotanical study. Frontiers in Pharmacology, 12, 760492. https://doi.org/10.3389/fphar.2021.760492

Belhouala, K., Pandiella, A., & Benarba, B. (2024). Synergistic effects of medicinal plants in combination with spices from Algeria: Anticancer, antiangiogenic activities, and embrytoxicity studies. Journal of Ethnopharmacology, 330, 118187. https://doi.org/10.1016/j.jep.2024.118187

Benarba, B., Elmallah, A., & Pandiella, A. (2019). Bryonia dioica aqueous extract induces apoptosis and G2/M cell cycle arrest in MDA MB 231 breast cancer cells. Molecular Medicine Reports, 20(1), 73-80. https://doi.org/10.3892/mmr.2019.10220

Bikoro Bi Athomo, A., Engozogho Anris, S. P., Safou-Tchiama, R., Santiago-Medina, F. J., Cabaret, T., Pizzi, A., & Charrier, B. (2018). Chemical composition of African Mahogany (K. Ivorensis A. Chev) extractive and tannin structures of the bark by MALDI-TOF. Industrial Crops and Products, 113, 167-178. https://doi.org/10.1016/j.indcrop.2018.01.013

Bouyahya, A., Omari, N. E., Bakrim, S., Hachlafi, N. E., Balahbib, A., Wilairatana, P., & Mubarak, M. S. (2022). Advances in dietary phenolic compounds to improve chemosensitivity of anticancer drugs. Cancers, 14(19), 4573. https://doi.org/10.3390/cancers14194573

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/s0023-6438(95)80008-5

Çayan, F., Deveci, E., Tel-Çayan, G., & Duru, M. E. (2020). Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD. Journal of Food Measurement and Characterization, 14, 1690-1698. https://doi.org/10.1007/s11694-020-00417-0

Cieniak, C., Walshe-Roussel, B., Liu, R., Muhammad, A., Saleem, A., Haddad, P. S., Cuerrier, A., Foster, B. C., & Arnason, J. T. (2015). Phytochemical Comparison of the Water and Ethanol Leaf Extracts of the Cree medicinal plant, Sarracenia purpurea L. (Sarraceniaceae). Journal of Pharmacy & Pharmaceutical Sciences, 18(4), 484-493. https://doi.org/10.18433/j35w27

Cortés-Rojas, D. F., de Souza, C. R. F., & Oliveira, W. P. (2014). Clove (Syzygium aromaticum): a precious spice. Asian Pacific Journal of Tropical Biomedicine, 4(2), 90-96. https://doi.org/10.1016/S2221-1691(14)60215-X

Demir, T., Akpınar, Ö., Kara, H., & Güngör, H. (2022). Phenolic profile and investigation of biological activities of Allium scorodoprasum L. subsp. rotundum. Food Bioscience, 46, 101548. https://doi.org/10.1016/j.fbio.2022.101548

Deveci, E., Tel‐Çayan, G., Duru, M. E., & Öztürk, M. (2019). Phytochemical Contents, antioxidant effects, and inhibitory activities of key enzymes associated with Alzheimer’s disease, ulcer, and skin disorders of Sideritis Albiflora and Sideritis Leptoclada. Journal of Food Biochemistry, 43(12), 13078. https://doi.org/10.1111/jfbc.13078

Feng, R., Lu, Y., Bowman, L. L., Qian, Y., Castranova, V., & Ding, M. (2005). Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. Journal of Biological Chemistry, 280(30), 27888-27895. https://doi.org/10.1074/jbc.M503347200

Gautam, R., Bassi, A. S., Yanful, E. K., & Cullen, E. (2007). Biodegradation of automotive waste polyester polyurethane foam using Pseudomonas chlororaphis ATCC55729. International Biodeterioration & Biodegradation, 60(4), 245-249. https://doi.org/10.1016/j.ibiod.2007.03.009

Hegde, M. V., Patil, S., & Bhalerao, S. (2008). A philosophy for integration of ayurveda with modern medicine: A biochemist's perspective. Current Science, 95(6), 721-722.

Hoareau, L., & DaSilva, E. J. (1999). Medicinal plants: a re-emerging health aid. Electronic Journal of Biotechnology, 2(2), 3-4.

Hosu, A., Cristea, V.-M., Cimpoiu, C. (2014). Analysis of Total Phenolic, Flavonoids, Anthocyanins and Tannins Content in Romanian Red Wines: Prediction of Antioxidant Activities and Classification of Wines Using Artificial Neural Networks. Food Chemistry, 150, 113-118. https://doi.org/10.1016/j.foodchem.2013.10.153

Jayaprakasam, R., & Ravi, T. K. (2012). Evaluation of anti-arthritic activity of the root extract of Acalypha indica Linn. Using in vitro techniques. International Journal of Phytopharmacy, 2(6), 169-173.

Kamto, E. L. D., Zingue, S., Grein, T., Kamdem, B. P., Maxeiner, S., Rutz, J., Mbing, J. N., Pegnyemb, D. E., Njamen, D., Blaheta, R. A., & Leitão, G. G. (2023). Two Phenolic compounds (Biscoumarin and Biflavonoid) from Ormocarpum kirkii S. Moore (Fabaceae) exhibit anticancer properties against human prostate cancer cells. Journal of Herbal Medicine, 42, 100811. https://doi.org/10.1016/j.hermed.2023.100811

Kanimozhi, S., Durga, R., Sabithasree, M., Kumar, A. V., Sofiavizhimalar, A., Kadam, A. A., Rajagopal, R., Sathya, R., & Azelee, N. I. W. (2022). Biogenic synthesis of silver nanoparticle using Cissus quadrangularis extract and its in vitro study. Journal of King Saud University-Science, 34(4), 101930. https://doi.org/10.1016/j.jksus.2022.101930

Konstantinou, E. K., Panagiotopoulos, A. A., Argyri, K., Panoutsopoulos, G. I., Dimitriou, M., & Gioxari, A. (2024). Molecular pathways of rosmarinic acid anticancer activity in triple-negative breast cancer cells: A literature review. Nutrients, 16(1), 2. https://doi.org/10.3390/nu16010002

Lapornik, B., Prosek, M., & Wondra, A. G. (2005). Comparison of extracts prepared from plant by-products using different solvents and extraction time. Journal of Food Engineering, 71(2), 214-222. https://doi.org/10.1016/j.jfoodeng.2004.10.036

Lee, K.-M., Kang, H.-S., Yun, C.-H., & Kwak, H.-S. (2012). Potential in vitro protective effect of quercetin, catechin, caffeic acid and phytic acid against ethanol-induced oxidative stress in SK-Hep-1 cells. Biomolecules & Therapeutics, 20(5), 492-498. https://doi.org/10.4062/biomolther.2012.20.5.492

Liu, G., Zhu, W., Li, S., Zhou, W., Zhang, H., Wang, J., Liu, X., Zhang, J., Liang, L., & Xu, X. (2022). Antioxidant capacity and interaction of endogenous phenolic compounds from tea seed oil. Food Chemistry, 376, 131940. https://doi.org/10.1016/j.foodchem.2021.131940

Luo, C., Zou, L., Sun, H., Peng, J., Gao, C., Bao, L., Ji, R., Jin, Y., & Sun, S. (2020). A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Frontiers in Pharmacology, 11, 153. https://doi.org/10.3389/fphar.2020.00153

Maheshwari, N., & Sharma, M. C. (2023). Anticancer properties of some selected plant phenolic compounds: Future leads for therapeutic development. Journal of Herbal Medicine, 42, 100801. https://doi.org/10.1016/j.hermed.2023.100801

Marsoul, A., Ijjaali, M., Elhajjaji, F., Taleb, M., Salim, R., & Boukir, A. (2020). Phytochemical screening, total phenolic and flavonoid methanolic extract of pomegranate bark (Punica granatum L): Evaluation of the inhibitory effect in acidic medium 1 M HCl. Materials Today: Proceedings, 27, 3193-3198. https://doi.org/10.1016/j.matpr.2020.04.202

Min, J., Shen, H., Xi, W., Wang, Q., Yin, L., Zhang, Y., Yu, Y., Yang, Q., & Wang, Z. N. (2018). Synergistic Anticancer Activity of Combined Use of Caffeic Acid with Paclitaxel Enhances Apoptosis of Non-Small-Cell Lung Cancer H1299 Cells in vivo and in vitro. Cellular Physiology and Biochemistry, 48(4), 1433-1442. https://doi.org/10.1159/000492253

Muhammad, H., Qasim, M., Ikram, A., Versiani, M. A., Tahiri, I. A., Yasmeen, K., Abbasi, M. W., Azeem, M., Ali, S. T., & Gul, B. (2020). Antioxidant and antimicrobial activities of Ixora coccinea root and quantification of phenolic compounds using HPLC. South African Journal of Botany, 135, 71-79. https://doi.org/10.1016/j.sajb.2020.08.012

Nejjari, R., Benabbes, M., Amrani, M., Meddah, B., Bouatia, M., & Taoufik, J. (2019). Phytochemical screening and wound healing activity of Telephium imperati (L.) in rats. South African Journal of Botany, 123, 147-151. https://doi.org/10.1016/j.sajb.2019.03.023

Nile, S. H., Ko, E. Y., Kim, D. H., & Keum, Y.-S. (2016). Screening of ferulic acid related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity. Revista Brasileira de Farmacognosia, 26(1), 50-55. https://doi.org/10.1016/j.bjp.2015.08.013

Oyaizu, M. (1986). Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from Glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307

Oyedapo, O. O., & Famurewa, A. J. (1995). Antiprotease and membrane stabilizing activities of extracts of Fagara zanthoxyloides, Olax subscorpioides and Tetrapleura tetraptera. International Journal of Pharmacognosy, 33(1), 65-69. https://doi.org/10.3109/13880209509088150

Rahman, H., Eswaraiah, M. C., & Dutta, A. M. (2015). In-vitro anti-inflammatory and anti-arthritic activity of Oryza Sativa Var. joha rice (an aromatic indigenous rice of Assam). American-Eurasian Journal of Agricultural & Environmental Sciences, 15(1), 115-121.

Rahman, T., Hosen, I., Islam, M. M. T., & Shekhar, H. U. (2012). Oxidative stress and human health. Advances in Bioscience and Biotechnology, 3, 997-1019. https://doi.org/10.4236/abb.2012.327123

Rios, J. L., & Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100(1-2), 80-84. https://doi.org/10.1016/j.jep.2005.04.025

Ruch, R. J., Cheng, S., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from chinese green tea. Carcinogenesis, 10(6), 1003-1008. https://doi.org/10.1093/carcin/10.6.1003

Sakat, S., Juvekar, A. R., & Gambhire, M. N. (2010). In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. International Journal of Pharmacy and Pharmaceutical Sciences, 2(1), 146-155.

Sangeetha, G., & Vidhya, R. (2016). In vitro anti-inflammatory activity of different parts of Pedalium Murex (L.). International Journal of Herbal Medicine, 4(3), 31-36.

Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry, 53(20), 7749-7759. https://doi.org/10.1021/jf051513y

Shinde, U. A., Kulkarni, K. R., Phadke, A. S., Nair, A. M., Mungantiwar, A. A., Dikshit, V. J., & Saraf, M. N. (1999). Mast cell stabilizing and lipoxygenase inhibitory activity of Cedrus deodara (Roxb.) Loud. wood oil. Indian Journal of Experimental Biology, 37(3), 258-261.

Silva, L. R., Rodrigues, S., Kumar, N., Goel, N., Singh, K., & Gonçalves, A. C. (2024). Development of phenolic acids-based system as anticancer drugs. In Advancement of Phenolic Acids in Drug Discovery (pp. 255-294) New York, US: Academic Press. https://doi.org/10.1016/B978-0-443-18538-0.00006-8

Singh, P., Grewal, A. S., Pandita, D., & Lather, V. (2018). Synthesis and evaluation of a series of caffeic acid derivatives as anticancer agents. Future Journal of Pharmaceutical Sciences, 4(2), 124-130. https://doi.org/10.1016/j.fjps.2017.11.002

Sioud, F., Ben Toumia, I., Lahmer, A., Khlifi, R., Dhaouefi, Z., Maatouk, M., Ghedira, K., & Chekir-Ghedira, L. (2020). Methanolic extract of Ephedra alata ameliorates cisplatin-induced nephrotoxicity and hepatotoxicity through reducing oxidative stress and genotoxicity. Environmental Science and Pollution Research, 27, 12792-12801. https://doi.org/10.1007/s11356-020-07904-3

Sofowora, A. (1993). Medicinal plants and traditional medicinal in Africa. (2nd ed.). Ibadan, Nigeria: Sunshine House.

Spigno, G., Trarnelli, L., & De Faveri, D. M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81(1), 200-208. https://doi.org/10.1016/j.jfoodeng.2006.10.021

Srivastava, A. K., Singh, D., & Singh, R. K. (2023). Drug-delivery systems of phytochemicals as therapeutic strategies in cancer therapy New York, US: Academic Press. https://doi.org/10.1016/C2022-0-02292-3

Sunmathi, D., Sivakumar, R., & Ravikumar, K. (2016). In vitro Anti-inflammatory and antiarthritic activity of ethanolic leaf extract of Alternanthera sessilis (L.) R. BR. Ex DC and Alternanthera philoxeroides (Mart.) Griseb. International Journal of Advances in Pharmacy, Biology and Chemistry, 5(2), 109-115.

Sweed, N. M., Dawoud, M. H. S., Aborehab, N. M., & Ezzat, S. M. (2024). An approach for an enhanced anticancer activity of ferulic acid-loaded polymeric micelles via MicroRNA-221 mediated activation of TP53INP1 in caco-2 cell line. Scientific Reports, 14, 2073. https://doi.org/10.1038/s41598-024-52143-y

Tavallali, V., Rahmati, S., Bahmanzadegan, A., & Lasibi, M. J. M. (2024). Phenolic profile and evaluation of antimicrobial and anticancer activities of Calendula officinalis L. using exogenous polyamines application. Industrial Crops and Products, 214, 118571. https://doi.org/10.1016/j.indcrop.2024.118571

Trease, G. E., & Evans, W. C. (2002). Pharmacognosy. (15th ed.). London: UK: Saunders Publishers.

Tutun, H., & Yipel, M. (2024). Phenolic acids as potent antioxidant agents. In N. Kumar, N. Goel & J. S. Gandara (Eds.), Advancement of Phenolic Acids in Drug Discovery (pp. 145-175). Academic Press.

Ullah, M. F., & Khan, M. W. (2008). Food as medicine: potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pacific Journal of Cancer Prevention, 9(2), 187-195.

Wangchuk, P., Keller, P. A., Pyne, S. G., Taweechotipatr, M., Tonsomboon, A., Rattanajak, R., & Kamchonwongpaisan, S. (2011). Evaluation of an ethnopharmacologically selected Bhutanese medicinal plants for their major classes of phytochemicals and biological activities. Journal of Ethnopharmacology, 137(1), 730-742. https://doi.org/10.1016/j.jep.2011.06.032

Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940-949. https://doi.org/10.1016/j.foodchem.2007.04.038

Yadav, R. N. S. & Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology, 3(12), 10-14.

Yang, B., Fu, X., Sidiropoulos, N. D., & Hong, M. (2017). Towards k-means-friendly spaces: Simultaneous deep learning and clustering. Sydney, Australia: Proceedings of the 34th International Conference on Machine Learning.

Yang, W. S., Jeong, D., Yi, Y.-S., Park, J. G., Seo, H., Moh, S. H., Hong, S., & Cho, J. Y. (2013). IRAK1/4-targeted anti-inflammatory action of caffeic acid. Mediators of Inflammation, 2013, 518183. https://doi.org/10.1155/2013/518183

Yen, G.-C., Chen, C.-S., Chang, W.-T., Wu, M.-F., Cheng, F.-T., Shiau, D.-K., & Hsu, C.-L. (2018). Antioxidant activity and anticancer effect of ethanolic and aqueous extracts of the roots of Ficus beecheyana and their phenolic components. Journal of Food and Drug Analysis, 26(1), 182-192. https://doi.org/10.1016/j.jfda.2017.02.002

Published

13-12-2024

How to Cite

Benarba, B., Belhouala, K., Korkmaz, C., Küçükaydın, M. T., Küçükaydın, S., & Duru, M. E. (2024). Phenolic profile, antioxidant, anti-inflammatory and anticancer activities of Telephium imperati L. Journal of Phytology, 16, 216–225. https://doi.org/10.25081/jp.2024.v16.9334

Issue

Section

Articles