Genetic analyses of advanced breeding lines of rice for yield-attributing traits and salinity stress tolerance
DOI:
https://doi.org/10.25081/jp.2024.v16.9303Keywords:
Advanced lines, Yield-attributes, Phenotypic variability, Genetic parameters, Diversity analysis, Principal component analysis, Salt stressAbstract
The development of advanced rice breeding lines and their evaluation for yield-attributes and salinity stress tolerance offers a significant opportunity to identify high-yielding salt-tolerant genotypes exhibiting desired traits. The present study aimed to examine the morpho-genetic variability of thirty-six advanced breeding lines of rice, with a focus on features that contribute to yield and salinity stress tolerance. Three replications of a randomized complete block design were used in the first experiment. Significant variability was observed among the lines for the studied quantitative traits. Based on yield attributing traits, the advanced breeding lines viz., Line 10, Line 21, Line 22, Line 23, Line 24 and Line 25 showed better performances in terms of earliness and yield. In yield-related variables such as the number of effective tillers per plant, plant height, and grain yield per plant exhibited high heritability coupled with high genetic advance as percentage of mean. The results of PCA biplot showed that the PC1 and PC2 accounted for the greatest variability of advanced Line 10, Line 11, Line 18, Line 21, Line 22, Line 23, Line 24, Line 25, Nerica 10, Begunipata, and Binadhan-14 with significant influence of the studied traits. Cluster analysis reflected that the high-yielding genotypes were placed in cluster II and VI. Highest genetic distance was observed among the genotypes of cluster III and cluster VI. In the second experiment, four advanced breeding lines along with salt tolerant and susceptible checks were assessed for salinity tolerance at the reproductive stage. The plants were cultivated in a large plastic-tub filled with field soil. During the late booting stage, saline (EC=10 dS/m) irrigation water was applied to the plants and continued for three weeks. While Lines 10 and 12 demonstrated a reduced decline, salt stress caused a significant loss in yield and yield-attributing characteristics in all genotypes. Line 10 and Line 12 which showed a reasonable degree of salt tolerance as well as early maturity were placed in the respective quadrant of the biplot. Stress tolerance indices also reflecting the better salt tolerance phenomena of the advanced Line 10 and Line 12. Considering all of the traits, Line 10 and Line12 could be selected as desired advanced rice lines for the development of early, high-yielding and salt tolerant rice varieties.
Downloads
References
Ahmadizadeh, M., Vispo, N. A., Calapit-Palao, C. D. O., Pangaan, I. D., Viña, C. D., & Singh, R. K. (2016). Reproductive stage salinity tolerance in rice: a complex trait to phenotype. Indian Journal of Plant Physiology, 21, 528-536. https://doi.org/10.1007/s40502-016-0268-6
Ahmed, M. R. (2024). Climate shocks’ impact on agricultural income and household food security in Bangladesh: An implication of the food insecurity experience scale. Heliyon, 10(4), e25687. https://doi.org/10.1016/j.heliyon.2024.e25687
Ali, S., Gautam, R. K., Mahajan, R., Krishnamurthy, S. L., Sharma, S. K., Singh, R. K., & Ismail, A. M. (2013). Stress indices and selectable traits in SALTOL QTL introgressed rice genotypes for reproductive stage tolerance to sodicity and salinity stresses. Field Crops Research, 154, 65-73. https://doi.org/10.1016/j.fcr.2013.06.011
Alkahtani, J., & Dwiningsih, Y. (2023). Analysis of Morphological, Physiological, and Biochemical Traits of Salt Stress Tolerance in Asian Rice Cultivars at Seedling and Early Vegetative Stages. Stresses, 3(4), 717-735. https://doi.org/10.3390/stresses3040049
Allard, R. W. (1960). Principles of plant Breeding. (1st ed.). New York, USA: John Wiley and Sons Inc.
Anderson, K. (2023). Rice and the climate crisis: how do they relate? Greenly. Retrieved from https://greenly.earth/en-us/blog/ecology-news/rice-and-the-climate-crisis--how-do-they-relate
Andrew-Peter-Leon, M. T., Ramchander, S., Kumar, K. K., Muthamilarasan, M., & Pillai, M. A. (2021). Assessment of efficacy of mutagenesis of gamma-irradiation in plant height and days to maturity through expression analysis in rice. PLoS One, 16(1), e0245603. https://doi.org/10.1371/journal.pone.0245603
Anshori, M. F., Purwoko, B. S., Dewi, I. S., Ardie, S. W., Suwarno, W. B., & Safitri, H. (2018). Determination of selection criteria for screening of rice genotypes for salinity tolerance. SABRAO Journal of Breeding & Genetics, 50(3), 279-294.
Ashraf, A. (2023). Identify the challenges of rice production and coping strategies in Narowal. Pakistan Journal of Social Research, 5(4), 10-15. https://doi.org/10.52567/pjsr.v5i04.1327
Ashraf, A. T. M. H., Rahman, M. M., Hossain, M. M., & Sarker, U. (2020). Study of correlation and path analysis in the selected okra genotypes. Asian Research Journal of Agriculture, 12(4), 1-11. https://doi.org/10.9734/ARJA/2020/v12i430087
Basavaraj, P. S., Gireesh, C., Bharamappanavara, M., Manoj, C. A., Ishwaryalakshmi, L. V. G., Senguttuvel, P., Sundaram, R. M., Subbarao, L. V., & Anantha, M. S. (2022). Genetic analysis of introgression lines of Oryza rufipogon for improvement of low phosphorous tolerance in indica rice. Indian Journal of Genetics and Plant Breeding, 82(02), 135-142. https://doi.org/10.31742/IJGPB.82.2.1
Batool, M., El-Badri, A. M., Hassan, M. U., Haiyun, Y., Chunyun, W., Zhenkun, Y., Jie, K., Wang, B., & Zhou, G. (2022). Drought stress in Brassica napus: effects, tolerance mechanisms, and management strategies. Journal of Plant Growth Regulation, 42, 21-45. https://doi.org/10.1007/s00344-021-10542-9
BBS. (2015). Bangladesh Bureau of Statistics.Yearbook of Agricultural Statistics of Bangladesh-2013 (25th series). Retrieved from http://rubibook.com/books/bbs-bangladesh-statistics-bangladesh-bureau-of-statistics/yearbook-of-agricultural-statistics-of-bangladesh-2013-25th-series
Bouslama, M., & Schapaugh Jr., W. T. (1984). Stress tolerance in soybeans: Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24(5), 933-937. https://doi.org/10.2135/cropsci1984.0011183X002400050026x
Chen, T., Shabala, S., Niu, Y., Chen, Z.-H., Shabala, L., Meinke, H., Venkataraman, G., Pareek, A., Xu, J., & Zhou, M. (2021). Molecular mechanisms of salinity tolerance in rice. The Crop Journal, 9(3), 506-520. https://doi.org/10.1016/j.cj.2021.03.005
Chowdhury, N., Islam, S., Mim, M. H., Akter, S., Naim, J., Nowicka, B., & Hossain, M. A. (2023). Characterization and genetic analysis of the selected rice mutant populations. SABRAO Journal of Breeding and Genetics, 55(1) 25-37. https://doi.org/10.54910/sabrao2023.55.1.3
Datta, A. K., Hossain, M. A., & Rahman, L. (2005). Genetic parameters, inter-relationship and path-coefficient analysis in soybean (Glycine max (L.) Merrill). Journal of the Bangladesh Agricultural University, 3(2), 225-230. https://doi.org/10.22004/ag.econ.276479
Debata, D. K., Sethy, A. K., & Biswasi, S. (2020). Performance of local scented rice verities at North Eastern Ghat Zone of Odisha. In Theme - II : Sustainable rice farming,1st Indian Rice Congress-2020, Rice Research and Development for Achieving Sustainable Development Goals. Extended Summaries, 638.
Deshmukh, S. N., Basu, M. S., & Reddy, P. S. (1986). Genetic variability, character association and path coefficients of quantitative traits in Virginia bunch varieties of groundnut. Indian Journal of Agricultural Sciences, 56, 816-821.
Dustgeer, Z., Seleiman, M. F., Khan, I., Chattha, M. U., Ali, E. F., Alhammad, B. A., Jalal, R. S., Refay, Y., & Hassan, M. U. (2021). Glycine-betaine induced salinity tolerance in maize by regulating the physiological attributes, antioxidant defense system and ionic homeostasis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12248-12248. https://doi.org/10.15835/nbha49112248
El Sabagh, A., Islam, M. S., Skalicky, M., Raza, M. A., Singh, K., Hossain, M. A., Mahboob, W., Iqbal, M. A., Ratnasekera, D., Singhal, R. K., Ahmed, S., Kumari, A., Wasaya, A., Sytar, O., Brestic, M., Cig, F., Erman, M., Ur Rahman, M. H., Ullah, N., & Arshad, A. (2021). Salinity stress in wheat (Triticum aestivum L.) in the changing climate: Adaptation and management strategies. Frontiers in Agronomy, 3, 661932. https://doi.org/10.3389/fagro.2021.661932
FAO. (2009). How to feed the world in 2050? Food and Agriculture Organization. Retrieved from https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf
Fernandez, G. C. J. (1992). Effective selection criteria for assessing plant stress tolerance. In Proceedings of the international symposium on adaptation of vegetables and other food crops in temperature and water stress, Taiwan, 257-270.
Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), 897-912. https://doi.org/10.1071/AR9780897
Franco, J., Crossa, J., Ribaut, J. M., Bertran, J., Warburton, M. L., & Khairallah, M. (2001). A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. Theoretical and Applied Genetics, 103, 944-952. https://doi.org/10.1007/s001220100641
Gerona, M. E. B., Deocampo, M. P., Egdane, J. A., Ismail, A. M., & Dionisio-Sese, M. L. (2019). Physiological responses of contrasting rice genotypes to salt stress at reproductive stage. Rice Science, 26(4), 207-219. https://doi.org/10.1016/j.rsci.2019.05.001
Gireesh, C., Husain, S. M., Shivakumar, M., Satpute, G. K., Kumawat, G., Arya, M., Agarwal, D. K., & Bhatia, V. S. (2017). Integrating principal component score strategy with power core method for development of core collection in Indian soybean germplasm. Plant Genetic Resources, 15(3), 230-238. https://doi.org/10.1017/S1479262115000556
Girma, B. T., Ali, H. M., & Gebeyaneh, A. A. (2017). Effect of salinity on final growth stage of different rice (Oryza sativa L.) genotypes. Asian Journal of Agricultural Research, 11(1), 1-9. https://doi.org/10.3923/ajar.2017.1.9
Hakim, M. A., Juraimi, A. S., Hanafi, M. M., Ismail, M. R., Selamat, A., Rafii, M. Y., & Latif, M. A. (2014). Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes. BioMed Research International, 2014(1), 208584. https://doi.org/10.1155/2014/208584
Hassan, M. U., Aamer, M., Chattha, M. U., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., & Guoqin, H. (2020). The critical role of zinc in plants facing the drought stress. Agriculture, 10(9), 396. https://doi.org/10.3390/agriculture10090396
Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Barbanti, L., Aamer, M., Iqbal, M. M., Nawaz, M., Mahmood, A., Ali, A., & Aslam, M. T. (2021). Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies-A review. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 155(2), 211-234. https://doi.org/10.1080/11263504.2020.1727987
Hossain, A., Sabagh, A. E., Bhatt, R., Farooq, M., & Hasanuzzaman, M. (2021). Consequences of salt and drought stresses in rice and their mitigation strategies through intrinsic biochemical adaptation and applying stress regulators. In S. Fahad, O. Sonmez, S. Saud, D. Wang, C. Wu, M. Adnan & V. Turan (Eds.), Sustainable Soil and Land Management and Climate Change (pp. 1-15). Florida, US: CRC Press.
Hossain, M., Biswas, P., & Islam, M. R. (2023). Cold-tolerant and short-duration rice (Oryza sativa L.) for sustainable food security of the flash flood-prone Haor wetlands of Bangladesh. Sustainability, 15(24), 16873. https://doi.org/10.3390/su152416873
Hussain, B. M. N., Akram, S., Raffi, S.-A., Burritt, D. J., & Hossain, M. A. (2016). Exogenous glutathione improves salinity stress tolerance in rice (Oryza sativa L.). Plant Gene and Trait, 7(11), 1-17. https://doi.org/10.5376/pgt.2016.07.0011
Hussain, S., Zhang, J.-H., Zhong, C., Zhu, L.-F., Cao, X.-C., Yu, S.-M., Bohr, J. A., Hu, J.-J., & Jin, Q. Y. (2017). Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. Journal of Integrative Agriculture, 16(11), 2357-2374. https://doi.org/10.1016/S2095-3119(16)61608-8
Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Journal of Agronomy, 47(7), 314-318. https://doi.org/10.2134/agronj1955.00021962004700070009x
Kakar, N., Jumaa, S. H., Redoña, E. D., Warburton, M. L., & Reddy, K. R. (2019). Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. Rice, 12, 57. https://doi.org/10.1186/s12284-019-0317-7
Kaul, M. L. H., & Garg, R. (1982). Radiation genetic studies in garden pea. I. Genetic variability, interrelationships and path analysis in protein rich genotypes. Biologisches Zentralblatt, 101, 271-82.
Khan, A. A., & Kabir, M. R. (2014). Evaluation of spring wheat genotypes (Triticum aestivum L.) for heat stress tolerance using different stress tolerance indices. Cercetari Agronomice Moldova, 47, 49-63. DOI:10.1515/cerce-2015-0004
Khan, M. A. R., Mahmud, A., Islam, M. N., Ghosh, U. K., & Hossain, M. S. (2023). Genetic variability and agronomic performances of rice genotypes in different growing seasons in Bangladesh. Journal of Agriculture and Food Research, 14, 100750. https://doi.org/10.1016/j.jafr.2023.100750
Khatun, T., Khatun, S. M., Mim, M. H., Naim, J., Jahin, S. A., Hossain, M. R., El-Esawi, M. A., & Hossain, M. A. (2024). Advanced mutant line developed from Fatemadhan shows salinity tolerance at both seedling and reproductive stages. Plant Science Today, 11(1), 316-328. https://doi.org/10.14719/pst.2917
Khodadadi, M., Fotokian, M. H., & Miransari, M. (2011). Genetic diversity of wheat (Triticum aestivum L.) genotypes based on cluster and principal component analyses for breeding strategies. Australian Journal of Crop Science, 5(1), 17-24.
Krishnamurthy, S. L., Gautam, R. K., Sharma, P. C., & Sharma, D. K. (2016). Effect of different salt stresses on agro-morphological traits and utilisation of salt stress indices for reproductive stage salt tolerance in rice. Field Crops Research, 190, 26-33. https://doi.org/10.1016/j.fcr.2016.02.018
Maji, A. T., & Shaibu, A. A. (2012). Application of principal component analysis for rice germplasm characterization and evaluation. Journal of Plant Breeding and Crop Science, 4(6), 87-93. https://doi.org/10.5897/JPBCS11.093
Mandavi, J. S., Lokesh, P., Nair, S. K., Sao, A., Verulkar, S. B., & Saxena, R. R. (2023). Cluster analysis of 55 Rice (Oryza sativa L.) germplasm. International Journal of Statistics and Applied Mathematics, 8(6S), 71-74.
Mondal, S., Pradhan, P., Das, B., Kumar, D., Paramanik, B., Yonzone, R., Barman, R., Saha, D., Karforma, J., Basak, A., Dey, P., & Seleiman, M. F. (2024). Genetic characterization and diversity analysis of indigenous aromatic rice. Heliyon, 10(10), e31232. https://doi.org/10.1016/j.heliyon.2024.e31232
Nisar, M., Kumar, A., Pandey, V. R., Singh, P. K., & Verma, O. P. (2017). Studies on genetic divergence analysis in rice (Oryza sativa L.) under sodic soil. International Journal of Current Microbiology and Applied Sciences, 6(12), 3351-3358. https://doi.org/10.20546/ijcmas.2017.612.390
Oladosu, Y., Rafii, M. Y., Abdullah, N., Malek, M. A., Rahim, H. A., Hussin, G., Latif, M. A., & Kareem, I. (2014). Genetic variability and selection criteria in rice mutant lines as revealed by quantitative traits. The Scientific World Journal, 2014, 190531. https://doi.org/10.1155/2014/190531
Opu, M. H. (2017). Experts: Haor regions need short-duration rice varieties to avoid crop damage in flash flood. Speakers at a session of the inaugural day of the 4th Annual Gobeshona Conference for research on climate change in Bangladesh (Gobeshona 4), Independent University, Bangladesh, Dhaka Tribune.
Palaniyappan, S., Arunachalam, P., Banumathy, S., Mini, M. L., & Muthuramu, S. (2020). Genetic divergence and clustering studies in advanced breeding lines of rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 11(02), 499-504. https://doi.org/10.37992/2020.1102.084
Parvez, M., Islam, M. R., & Dey, N. C. (2022). Household food insecurity after the early monsoon flash flood of 2017 among wetland (Haor) communities of northeastern Bangladesh: a cross‐sectional study. Food and Energy Security, 11(1), e326. https://doi.org/10.1002/fes3.326
Peterson, D. M., Wesenberg, D. M., Burrup, D. E., & Erickson, C. A. (2005). Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Science, 45(4), 1249-1255. https://doi.org/10.2135/cropsci2004.0063
Rahman, M. A., Thomson, M. J., Shah-E-Alam, M., de Ocampo, M., Egdane, J., & Ismail, A. M. (2016). Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization. Annals of Botany, 117(6), 1083-1097. https://doi.org/10.1093/aob/mcw030
Rahman, M. M., Jahan, I., Al Noor, M. M., Tuzzohora, M. F., Sohag, A. A. M., Raffi, S. A., Burritt, D. J., & Hossain, M. A. (2020). Potential determinants of salinity tolerance in rice (Oryza sativa L.) and modulation of tolerance by exogenous ascorbic acid application. Journal of Phytology, 12, 86-98. https://doi.org/10.25081/jp.2020.v12.6535
Rajesh, T., Paramasivam, K., & Thirumeni, S. (2010). Genetic divergence in land races of rice. Electronic Journal of Plant Breeding, 1(2), 199-204.
Razzaq, A., Ali, A., Safdar, L. B., Zafar, M. M., Rui, Y., Shakeel, A., Shaukat, A., Ashraf, M., Gong, W., & Yuan, Y. (2020). Salt stress induces physiochemical alterations in rice grain composition and quality. Journal of Food Science, 85(1), 14-20. https://doi.org/10.1111/1750-3841.14983
Robinson, H. F., Comstock, R. E., & Harvey, P. H. (1949). Estimates of heritability and the degree of dominance in corn. Agronomy Journal, 41(8), 353-359. https://doi.org/10.2134/AGRONJ1949.00021962004100080005X
Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non‐stress environment. Crop Science, 21(6), 943-946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x
Sanni, K. A., Fawole, I., Ogunbayo, S. A., Tia, D. D., Somado, E. A., Futakuchi, K., Sié, M., Nwilene, F. E., & Guei, R. G. (2012). Multivariate analysis of diversity of landrace rice germplasm. Crop Science, 52(2), 494-504. https://doi.org/10.2135/cropsci2010.12.0739
Shahidullah, S. M., Hanafi, M. M., Ashrafuzzaman, M., Ismail, M. R., Salam, M. A., & Khair, A. (2010). Biomass accumulation and energy conversion efficiency in aromatic rice genotypes. Comptes Rendus. Biologies, 333(1), 61-67. https://doi.org/10.1016/j.crvi.2009.10.002
Sharma, H. K., Sarkar, M., Choudhary, S. B., Kumar, A. A., Maruthi, R. T., Mitra, J., & Karmakar, P. G. (2016). Diversity analysis based on agro-morphological traits and microsatellite based markers in global germplasm collections of roselle (Hibiscus sabdariffa L.). Industrial Crops and Products, 89, 303-315. https://doi.org/10.1016/j.indcrop.2016.05.027
Sheeba, A., Yogameenakshi, P., Aananthi, N., Sasikumaran, S., & Vimala, G. (2023). Studies on genetic diversity and variability in rice (Oryza sativa L.) Genotypes. International Journal of Plant & Soil Science, 35(20), 1237-1243. https://doi.org/10.9734/ijpss/2023/v35i203922
Shelley, I. J., Takahashi-Nosaka, M., Kano-Nakata, M., Haque, M. S., & Inukai, Y. (2016). Rice cultivation in Bangladesh: present scenario, problems, and prospects. Journal of International Cooperation for Agricultural Development, 14, 20-29. https://doi.org/10.50907/jicad.14.0_20
Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001
Singh, R. K., & Chaudhary, B. D. (1977). Biometrical methods in quantitative genetic analysis. New Delhi, India: Kalyani Publishers. https://doi.org/10.2307/2530404
Singh, R. K., Kota, S., & Flowers, T. J. (2021). Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. Theoretical and Applied Genetics, 134, 3495-3533. https://doi.org/10.1007/s00122-021-03890-3
SRDI. (2010). Saline Soils of Bangladesh. Soil Resources Development Institute, SRMAF Project, Ministry of Agriculture-2010 (MOA), Government of the People’s Republic of Bangladesh. Retrieved from https://srdi.portal.gov.bd/sites/default/files/files/srdi.portal.gov.bd/publications/bc598e7a_df21_49ee_882e_0302c974015f/Soil salinity report-Nov 2010.pdf
Sultan, I., Khan, I., Chattha, M. U., Hassan, M. U., Barbanti, L., Calone, R., Ali, M., Majid, S., Ghani, M. A., Batool, M., Izzat, W., & Usman, S. (2021). Improved salinity tolerance in early growth stage of maize through salicylic acid foliar application. Italian Journal of Agronomy, 16(3), 1-11. https://doi.org/10.4081/IJA.2021.1810
Takele, E., Mekbib, F., & Mekonnen, F. (2022). Genetic variability and characters association for yield, yield attributing traits and protein content of lentil (Lens Culinaris Medikus) genotype in Ethiopia. CABI Agriculture and Bioscience, 3(1), 9. https://doi.org/10.1186/s43170-022-00079-6
UN. (2012). Feeding the world sustainably. United Nations. Retrieved from https://www.un.org/en/chronicle/article/feeding-world-sustainably
Viana, V. E., Pegoraro, C., Busanello, C., & Costa de Oliveira, A. (2019). Mutagenesis in rice: the basis for breeding a new super plant. Frontiers in Plant Science, 10, 1326. https://doi.org/10.3389/fpls.2019.01326
Vispo, N. A., Daep, R., Mojares, R., Pangaan, I. D., Babu, A. P., & Singh, R. K. (2015). A novel phenotyping technique for reproductive-stage salinity tolerance in rice. Procedia Environmental Sciences, 29, 32. https://doi.org/10.1016/j.proenv.2015.07.141
Ward Jr., J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236-244. https://doi.org/10.1080/01621459.1963.10500845
Xiao, D., Li, J., Deng, X., Wei, P., Tang, J., & Wei, H. (2022). Response of quality formation of different rice varieties to salt stress. Journal of Agricultural Science, 34(8), 1840-1847. https://doi.org/10.11869/j.issn.100-8551.2020.08.1840
Yao, D., Wu, J., Luo, Q., Zhang, D., Zhuang, W., Xiao, G., Deng, Q., & Bai, B. (2022). Effects of salinity stress at reproductive growth stage on rice (Oryza sativa L.) composition, starch structure, and physicochemical properties. Frontiers in Nutrition, 9, 926217. https://doi.org/10.3389/fnut.2022.926217
Published
How to Cite
Issue
Section
Copyright (c) 2024 Sheikh Mahfuja Khatun, Jannatul Naim, Biswajit Das, Mumtarin Haque Mim, Sadia Akter, Sabina Yasmin, Mohammad Anwar Hossain

This work is licensed under a Creative Commons Attribution 4.0 International License.