Phytochemical composition and biological activities of Dorcoceras uthongensis (Gesneriaceae) - A new species from the limestone karst of Suphan Buri, Thailand

Authors

  • Jaran Prajanban Program in Medical Science, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok 10600, Thailand, Center of Biodiversity and Indigenous Culture, Bansomdejchaopraya Rajabhat University, Bangkok 10600, Thailand
  • Wichai Patumchartpat Program in Agricultural Science, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok 10600, Thailand, Center of Biodiversity and Indigenous Culture, Bansomdejchaopraya Rajabhat University, Bangkok 10600, Thailand
  • Radeekorn Akkarawongsapat Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
  • Chanita Napaswad Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
  • Sathit Panvilai Program in Medical Science, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok 10600, Thailand, Center of Biodiversity and Indigenous Culture, Bansomdejchaopraya Rajabhat University, Bangkok 10600, Thailand

DOI:

https://doi.org/10.25081/jp.2024.v16.9037

Keywords:

Dorcoceras, New species, Trichome, Biological activity, Phytochemical composition, LC-MS/MS-QTOF

Abstract

Dorcoceras uthongensis, a new species of the genus Dorcoceras Bunge, is described. This new species is endemic to Uthong district, Suphan Buri province, Thailand, and differs from the other species by exhibiting capitate glandular hairs with globose unicellular head on the abaxial surface of the leaf. Additionally, it is classified as an endangered species (EN) according to IUCN criteria. The phylogenetic analysis based on nuclear ITS1-5.8S-ITS2 confirmed its placement within Dorcoceras. Moreover, we sought to explore the potential biological activities of the crude extract of this new species. We evaluated the aqueous extract of leaves which revealed antioxidant activity and no cytotoxicity indicating potential safety for further research and utilization. To examine the phytochemical composition, we performed an analysis using LC-MS/MS-QTOF. The result revealed the presence of flavonoids, alkaloids, phenolic compounds, and terpenes.

Downloads

Download data is not yet available.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705

Bachman, S., Moat, J., Hill, A. W., de la Torre, J., & Scott, B. (2011). Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. ZooKeys, 150, 117-126. https://doi.org/10.3897/zookeys.150.2109

Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496.

Chen, P.-J., Lin, E.-S., Su, H.-H., & Huang, C.-Y. (2023). Cytotoxic, antibacterial, and antioxidant activities of the leaf extract of Sinningia bullata. Plants, 12(4), 859. https://doi.org/10.3390/plants12040859

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109

Di Simone, S. C., Flores, G. A., Acquaviva, A., Nilofar, Libero, M. L., Venanzoni, R., Tirillini, B., Orlando, G., Zengin, G., Lai, F., Fiorini, D., Angelini, P., Menghini, L., & Ferrante, C. (2023). Phytochemical and biological properties of the water extract from roots and leaves of Lactuca longidentata, an endemic phytoalimurgic (food) species of Central Sardinia (Italy). Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 157(3), 594-604. https://doi.org/10.1080/11263504.2023.2166620

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. https://doi.org/10.1093/nar/gkh340

Emsen, B., Surmen, B., & Karapinar, H. S. (2023). In vitro antioxidant and cytotoxic effects of three endemic plants from Turkey based on their phenolic profile. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 157(2), 346-356. https://doi.org/10.1080/11263504.2023.2165561

Ibrahim, S. R. M., & Mohamed, G. A. (2015). Litchi chinensis: medicinal uses, phytochemistry, and pharmacology. Journal of Ethnopharmacology, 174, 492-513. https://doi.org/10.1016/j.jep.2015.08.054

Kok, O., Emsen, B., & Surmen, B. (2023). Screening of in vitro cytotoxicity and antioxidant potential of selected endemic plants in Turkey. Journal of Taibah University for Science, 17(1), 2217369. https://doi.org/10.1080/16583655.2023.2217369

Kondeva-Burdina, M., Zheleva-Dimitrova, D., Nedialkov, P., Girreser, U., & Mitcheva, M. (2013). Cytoprotective and antioxidant effects of phenolic compounds from Haberlea rhodopensis Friv. (Gesneriaceae). Pharmacognosy Magazine, 9(36), 294-301. https://doi.org/10.4103/0973-1296.117822

Koyama, R., Ishibashi, M., Fukuda, I., Okino, A., Osawa, R., & Uno, Y. (2022). Pre- and post-harvest conditions affect polyphenol content in strawberry (Fragaria × ananassa). Plants, 11(17), 2220. https://doi.org/10.3390/plants11172220

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874. https://doi.org/10.1093/molbev/msw054

Lee, I.-G., Lee, J., Hong, S.-H., & Seo, Y.-J. (2023). Apigenin's therapeutic potential against viral infection. Frontiers in Bioscience, 28(10), 237. https://doi.org/10.31083/j.fbl2810237

Panvilai, S., Napaswad, C., Limthongkul, J., & Akkarawongsapat, R. (2020). Aqueous extracts of Thai medicinal plants possess anti-HIV-1 activity. Journal of Herbs, Spices & Medicinal Plants, 27(1), 1-10. https://doi.org/10.1080/10496475.2020.1753276

Prajanban, J., & Panvilai, S. (2021a). Dorcoceras wallichii. Collected from Mae Wa Waterfall, Lampang, Thailand, 17°26'20.1"N, 99°13'51.0"E, on 26 December ‎2021

Prajanban, J., & Panvilai, S. (2020). Dorcoceras uthongensis. Collected from Bansrisanpet Community Forest, Suphan Buri, Thailand, 14°22'30.4"N, 99°51'41.3"E, on 12 September ‎2020

Prajanban, J., & Panvilai, S. (2021b). Dorcoceras brunnuem. Collected from Wat Phrom Lok Khao Yai, Kanchanaburi, Thailand, 14°12'13.2"N, 99°08'00.8"E, on 10 December ‎2021

Prajanban, J., & Panvilai, S. (2021c). Dorcoceras glabrum. Collected from Khao Pat Thawi, Kanchanaburi, Thailand, 14°00'57.6"N, 99°19'24.2"E, on 10 December 2021

Prajanban, J., & Panvilai, S. (2022). Dorcoceras geoffrayi. Collected from Wat Phu Tok, Buengkan, Thailand, 18°08'07.0"N, 103°52'58.4"E, on 2 October ‎2022

Puglisi, C., & Middleton, D. J. (2017). A revision of Dorcoceras (Gesneriaceae) in Thailand. Thai Forest Bulletin (Botany), 45, 10-17. https://doi.org/10.20531/tfb.2017.45.1.03

Puglisi, C., Yao, T. L., Milne, R., Möller, M., & Middleton, D. J. (2016). Generic recircumscription in the Loxocarpinae (Gesneriaceae), as inferred by phylogenetic and morphological data. Taxon, 65(2), 277-292. https://doi.org/10.12705/652.5

Rambaut, A. (2022). FigTree v. 1.4. 4. 2018.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539-542. https://doi.org/10.1093/sysbio/sys029

Salehi, B., Venditti, A., Sharifi-Rad, M., Kręgiel, D., Sharifi-Rad, J., Durazzo, A., Lucarini, M., Santini, A., Souto, E. B., Novellino, E., Antolak, H., Azzini, E., Setzer, W. N., & Martins, N. (2019). The therapeutic potential of apigenin. International Journal of Molecular Sciences, 20(6), 1305. https://doi.org/10.3390/ijms20061305

Schinazi, R. F., Chu, C. K., Babu, J. R., Oswald, B. J., Saalmann, V., Cannon, D. L., Eriksson, B. F. H., & Nasr, M. (1990). Anthraquinones as a new class of antiviral agents against human immunodeficiency virus. Antiviral Research, 13(5), 265-272. https://doi.org/10.1016/0166-3542(90)90071-e

Sun, Y., Liu, X., Fu, X., Xu, W., Guo, Q., & Zhang, Y. (2023). Discrepancy study of the chemical constituents of Panax ginseng from different growth environments with UPLC-MS based metabolomics strategy. Molecules, 28(7), 2928. https://doi.org/10.3390/molecules28072928

Verdan, M. H., & Stefanello, M. L. A. (2012). Secondary metabolites and biological properties of Gesneriaceae species. Chemistry & Biodiversity, 9(12), 2701-2731. https://doi.org/10.1002/cbdv.201100246

White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols, 315-322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1

Yang, L.-Y., Yi, P., Chen, J.-L., Li, Y.-H., Qiu, J.-L., Wang, Z.-Y., Fu, M., Yuan, C.-M., Huang, L.-J., Hao, X.-J., & Gu, W. (2023). Chemical constituents of Primulina eburnea (Gesneriaceae) and their cytotoxic activities. Chemistry & Biodiversity, 20(5), e202300248. https://doi.org/10.1002/cbdv.202300248

Zhao, L., & Zheng, L. (2023). A review on bioactive anthraquinone and derivatives as the regulators for ROS. Molecules, 28(24), 8139. https://doi.org/10.3390/molecules28248139

Published

19-12-2024

How to Cite

Prajanban, J., Patumchartpat, W., Akkarawongsapat, R., Napaswad, C., & Panvilai, S. (2024). Phytochemical composition and biological activities of Dorcoceras uthongensis (Gesneriaceae) - A new species from the limestone karst of Suphan Buri, Thailand. Journal of Phytology, 16, 231–238. https://doi.org/10.25081/jp.2024.v16.9037

Issue

Section

Articles