In vitro antioxidant, anti-inflammatory, anti-cancer and in silico molecular docking studies of Clerodendrum thomsoniae
DOI:
https://doi.org/10.25081/jp.2024.v16.9015Keywords:
Clerodendrum thomsoniae, Antioxidant, Anti-inflammatory, Anti-cancer, In vitro and in silico biological studies, α-Tocopherol, StigmasterolAbstract
Clerodendrum thomsoniae is a member of the Lamiaceae family and is found throughout Asia, Australia, Africa, and America. C. thomsoniae (CT), mostly utilized in the floriculture sector, is sometimes referred to as bleeding heart vine or bag flower due to its exquisite decorative qualities. Apart from its high value in the floriculture industry, the plant has been utilized in traditional Indian and Japanese medicine to treat a variety of ailments. There is a dearth of information on the biological properties of the plant and its putative ingredients. Therefore, this study evaluated the antioxidant, anti-inflammatory, and anti-cancer potentials of the extract, as well as identified its phytocompounds. The antioxidant screening was based on nitric oxide (NO), hydrogen peroxide (H2O2), hydroxyl, and superoxide radical scavenging assays. In vitro anti-inflammatory activity of the extract was based on the egg albumin denaturation (EAD) assay, while the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay was used to determine its anti-cancer potential. The chemical composition of the extract was determined using the hyphenated gas chromatography-mass spectrometry (GC-MS) method. Lastly, the identified phytocompounds were molecular docked against the inflammatory [NF-κβ (4DN5)] and cancer [mdm2 (3W69)] proteins. At 200 μg/mL, CT extract-treated Vero normal cells exhibited more viability (78.32±1.19%) than the one treated with the human renal adenocarcinoma (ACHN) cell line (33.45±0.66%), which suggests CT extract to be selectively cytotoxic to the cancer cells. The extract also demonstrated considerable inhibition of EAD (IC50=164.59±17.85 μg/mL). Thus, the observed anti-cancer and anti-inflammatory properties of CT extract may be attributed to its notable NO and H2O2 radicals scavenging activities, with IC50 values of 205.7±11.44 and 69.74±6.50 μg/mL respectively. GC-MS analysis of the extract revealed sixteen major compounds. In silico studies indicated α-tocopherol and stigmasterol as the most promising compounds, having exhibited the highest binding energy scores of -9.9 and -8.7 kcal/mol against NF-κβ (4DN5) and mdm2 (3W69) proteins respectively. In conclusion, C. thomsoniae leaf extract showed considerable antioxidant, anti-inflammatory, and anti-cancer properties, which may be attributed to its α-tocopherol and stigmasterol contents.
Downloads
References
Alabi, Q. K., & Akomolafe, R. O. (2020). Kolaviron diminishes diclofenac-induced liver and kidney toxicity in wistar rats via suppressing inflammatory events, upregulating antioxidant defenses, and improving hematological indices. Dose-Response, 18(1), 1559325819899256. https://doi.org/10.1177/1559325819899256
Amarowicz, R. (2009). Squalene: a natural antioxidant?. European Journal of Lipid Science and Technology, 111(5), 411-412. https://doi.org/10.1002/ejlt.200900102
Ameena, M., Arumugham, I. M., Ramalingam, K., & Rajeshkumar, S. (2023). Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of chitosan thiocolchicoside-lauric acid nanogel. Cureus, 15(9), e46003. https://doi.org/10.7759/cureus.46003
AmeliMojarad, M., AmeliMojarad, M., & Pourmahdian, A. (2022). The inhibitory role of stigmasterol on tumor growth by inducing apoptosis in Balb/c mouse with spontaneous breast tumor (SMMT). BMC Pharmacology and Toxicology, 23, 42. https://doi.org/10.1186/s40360-022-00578-2
Aparna, V., Dileep, K. V., Mandal, P. K., Karthe, P., Sadasivan, C., & Haridas, M. (2012). Anti‐inflammatory property of n‐hexadecanoic acid: structural evidence and kinetic assessment. Chemical Biology & Drug Design, 80(3), 434-439. https://doi.org/10.1111/j.1747-0285.2012.01418.x
Binkowski, T. A., Naghibzadeh, S., & Liang, J. (2003). CASTp: computed atlas of surface topography of proteins. Nucleic Acids Research, 31(13), 3352-3355. https://doi.org/10.1093/nar/gkg512
Canli, Ö., Nicolas, A. M., Gupta, J., Finkelmeier, F., Goncharova, O., Pesic, M., Neumann, T., Horst, D., Löwer, M., Sahin, U., & Greten, F. R. (2017). Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell, 32(6), 869-883. https://doi.org/10.1016/j.ccell.2017.11.004
Chan, S.-L., & Yu, V. C. (2004). Brief review proteins of the bcl-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clinical and Experimental Pharmacology & Physiology, 31(3), 119-128. https://doi.org/10.1111/j.1440-1681.2004.03975.x
Changade, J. V., Thanvi, H., Raut, C., Chavan, M., Prasad, P., & Ladke, V. S. (2024). In vitro Evaluation of Anti-Cancer Potential of Different Solvent Extracts Derived from Clerodendrum Infortunatum Linn against Cervical Cancer. Asian Pacific Journal of Cancer Prevention, 25(3), 1065-1075. https://doi.org/10.31557/APJCP.2024.25.3.1065
Chaplin, D. D. (2010). Overview of the immune response. The Journal of Allergy and Clinical Immunology, 125(2), S3-S23. https://doi.org/10.1016/j.jaci.2009.12.980
Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271-277. https://doi.org/10.1016/0022-1759(86)90368-6
Dharmadeva, S., Galgamuwa, L. S., Prasadinie, C., & Kumarasinghe, N. (2018). In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. AYU (An International Quarterly Journal of Research in Ayurveda), 39(4), 239-242. https://doi.org/10.4103/ayu.AYU_27_18
Dobryniewski, J., Szajda, S. D., Waszkiewicz, N., & Zwierz, K. (2007). Biology of essential fatty acids (EFA). Przeglad Lekarski, 64(2), 91-99.
Fontana, M., Mosca, L., & Rosei, M. A. (2001). Interaction of enkephalins with oxyradicals. Biochemical Pharmacology, 61(10), 1253-1257. https://doi.org/10.1016/s0006-2952(01)00565-2
Garratt, D. C. (2012). The quantitative analysis of drugs. (3rd ed.). New York, US: Springer. https://doi.org/10.1007/978-1-4613-3380-7
Gentile, D., Patamia, V., Scala, A., Sciortino, M. T., Piperno, A., & Rescifina, A. (2020). Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study. Marine Drugs, 18(4), 225. https://doi.org/10.3390/md18040225
Goryanin, I., Ovchinnikov, L., Vesnin, S., & Ivanov, Y. (2022). Monitoring protein denaturation of egg white using passive microwave radiometry (mwr). Diagnostics, 12(6), 1498. https://doi.org/10.3390/diagnostics12061498
Hemnani, T., & Parihar, M. S. (1998). Reactive oxygen species and oxidative DNA damage. Indian Journal of Physiology and Pharmacology, 42(4), 440-452.
Hirayama, D., Iida, T., & Nakase, H. (2017). The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. International Journal of Molecular Sciences, 19(1), 92. https://doi.org/10.3390/ijms19010092
Joshi, A. J., Gadhwal, M. K., & Joshi, U. J. (2014). A combined approach based on 3D pharmacophore and docking for identification of new aurora A kinase inhibitors. Medicinal Chemistry Research, 23, 1414-1436. https://doi.org/10.1007/s00044-013-0747-5
Ju, J., Picinich, S. C., Yang, Z., Zhao, Y., Suh, N., Kong, A.-N., & Yang, C. S. (2010). Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis, 31(4), 533-542. https://doi.org/10.1093/carcin/bgp205
Kar, P., Kumar, V., Vellingiri, B., Sen, A., Jaishee, N., Anandraj, A., Malhotra, H., Bhattacharya, S., Mukhopadhyay, S., Kinoshita, M., Govindasamy, V., Roy, A., Naidoo, D., & Subramaniam, M. D. (2022a). Anisotine and amarogentin as promising inhibitory candidates against SARS-CoV-2 proteins: a computational investigation. Journal of Biomolecular Structure & Dynamics, 40(10), 4532-4542. https://doi.org/10.1080/07391102.2020.1860133
Kar, P., Saleh‐E‐In, M. M., Jaishee, N., Anandraj, A., Kormuth, E., Vellingiri, B., Angione, C., Rahman, P. K. S. M., Pillay, S., Sen A., Naidoo, D., Roy, A., & Choi, Y. E. (2022b). Computational profiling of natural compounds as promising inhibitors against the spike proteins of SARS‐CoV‐2 wild‐type and the variants of concern, viral cell‐entry process, and cytokine storm in COVID‐19. Journal of Cellular Biochemistry, 123(5), 964-986. https://doi.org/10.1002/jcb.30243
Kar, P., Sharma, N. R., Singh, B., Sen, A., & Roy, A. (2021). Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. Journal of Biomolecular Structure and Dynamics, 39(13), 4774-4785. https://doi.org/10.1080/07391102.2020.1780947
Khan, M. A., Sarwar, A. H. M. G., Rahat, R., Ahmed, R. S., & Umar, S. (2020). Stigmasterol protects rats from collagen induced arthritis by inhibiting proinflammatory cytokines. International Immunopharmacology, 85, 106642. https://doi.org/10.1016/j.intimp.2020.106642
Kousar, K., Majeed, A., Yasmin, F., Hussain, W., & Rasool, N. (2020). Phytochemicals from Selective Plants Have Promising Potential against SARS‐CoV‐2: Investigation and Corroboration through Molecular Docking, MD Simulations, and Quantum Computations. BioMed Research International, 2020, 6237160. https://doi.org/10.1155/2020/6237160
Kris-Etherton, P. M., Lichtenstein, A. H., Howard, B. V., Steinberg, D., & Witztum, J. L. (2004). Antioxidant vitamin supplements and cardiovascular disease. Circulation, 110(5), 637-641. https://doi.org/10.1161/01.CIR.0000137822.39831.F1
Krupa, K., Fritz, K., & Parmar, M. (2024). Omega-3 Fatty Acids. StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing.
Kunchandy, E., & Rao, M. N. A. (1990). Oxygen radical scavenging activity of curcumin. International Journal of Pharmaceutics, 58(3), 237-240. https://doi.org/10.1016/0378-5173(90)90201-E
Lennicke, C., Rahn, J., Lichtenfels, R., Wessjohann, L. A., & Seliger, B. (2015). Hydrogen peroxide–production, fate and role in redox signaling of tumor cells. Cell Communication and Signaling, 13, 1-19. https://doi.org/10.1186/s12964-015-0118-6
Liu, J., Sudom, A., Min, X., Cao, Z., Gao, X., Ayres, M., Lee, F., Cao, P., Johnstone, S., Plotnikova, O., Walker, N., Chen, G., & Wang, Z. (2012). Structure of the nuclear factor κB-inducing kinase (NIK) kinase domain reveals a constitutively active conformation. Journal of Biological Chemistry, 287(33), 27326-27334. https://doi.org/10.1074/jbc.M112.366658
Long, L. H., Evans, P. J., & Halliwell, B. (1999). Hydrogen peroxide in human urine: implications for antioxidant defense and redox regulation. Biochemical and Biophysical Research Communications, 262(3), 605-609. https://doi.org/10.1006/bbrc.1999.1263
López-Camacho, E., García-Godoy, M. J., García-Nieto, J., Nebro, A. J., & Aldana-Montes, J. F. (2016). A new multi-objective approach for molecular docking based on RMSD and binding energy. In M. Botón-Fernández, C. Martín-Vide, S. Santander-Jiménez, M. A. Vega-Rodríguez (Eds.), Algorithms for Computational Biology: Third International Conference, AlCoB 2016, Trujillo, Spain, June 21-22, 2016, Proceedings 3 (Vol. 9702, pp. 65-77) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-38827-4_6
Madhuranga, H. D. T., & Samarakoon, D. N. A. W. (2023). In vitro Anti-Inflammatory Egg Albumin Denaturation Assay: An Enhanced Approach. Journal of Natural & Ayurvedic Medicine, 7(3), 000411. https://doi.org/10.23880/jonam-16000410
Mahmud, S., Uddin, M. A. R., Zaman, M., Sujon, K. M., Rahman, M. E., Shehab, M. N., Islam, A., Alom, M. W., Amin, A., Akash, A. S., & Saleh, M. A. (2021). Molecular docking and dynamics study of natural compound for potential inhibition of main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 39(16), 6281-6289. https://doi.org/10.1080/07391102.2020.1796808
Mendoza, M., Mandani, G., & Momand, J. (2014). The MDM2 gene family. Biomolecular Concepts, 5(1), 9-19. https://doi.org/10.1515/bmc-2013-0027
Miyazaki, M., Naito, H., Sugimoto, Y., Yoshida, K., Kawato, H., Okayama, T., Shimizu, H., Miyazaki, M., Kitagawa, M., Seki, T., Fukutake, S., Shiose, Y., Aonuma, M., & Soga, T. (2013). Synthesis and evaluation of novel orally active p53–MDM2 interaction inhibitors. Bioorganic & Medicinal Chemistry, 21(14), 4319-4331. https://doi.org/10.1016/j.bmc.2013.04.056
Modi, P., Patel, S., & Chhabria, M. T. (2019). Identification of some novel pyrazolo [1, 5-a] pyrimidine derivatives as InhA inhibitors through pharmacophore-based virtual screening and molecular docking. Journal of Biomolecular Structure and Dynamics, 37(7), 1736-1749. https://doi.org/10.1080/07391102.2018.1465852
Morgan, L. V., Petry, F., Scatolin, M., de Oliveira, P. V., Alves, B. O., Zilli, G. A. L., Volfe, C. R. B., Oltramari, A. R., de Oliveira, D., Scapinello, J., & Müller, L. G. (2021). Investigation of the anti-inflammatory effects of stigmasterol in mice: insight into its mechanism of action. Behavioural Pharmacology, 32(8), 640-651. https://doi.org/10.1097/FBP.0000000000000658
Muhammed Ashraf, V. K., Kalaichelvan, V. K., Venkatachalam, V. V., & Ragunathan, R. (2021). Evaluation of in vitro cytotoxic activity of different solvent extracts of Clerodendrum thomsoniae Balf. F and its active fractions on different cancer cell lines. Future Journal of Pharmaceutical Sciences, 7, 50. https://doi.org/10.1186/s43094-021-00206-6
Němcová‐Fürstová, V., Balušíková, K., Halada, P., Pavlíková, N., Šrámek, J., & Kovář, J. (2019). Stearate‐Induced Apoptosis in Human Pancreatic β‐Cells is Associated with Changes in Membrane Protein Expression and These Changes are Inhibited by Oleate. Proteomics Clinical Applications, 13(4), 1800104. https://doi.org/10.1002/prca.201800104
Nodola, P., Miya, G. M., Mazwi, V., Oriola, A. O., Oyedeji, O. O., Hosu, Y. S., Kuria, S. K., & Oyedeji, A. O. (2024). Citrus limon Wastes from Part of the Eastern Cape Province in South Africa: Medicinal, Sustainable Agricultural, and Bio-Resource Potential. Molecules, 29(7), 1675. https://doi.org/10.3390/molecules29071675
O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
Osman, N. I., Sidik, N. J., Awal, A., Adam, N. A. M., & Rezali, N. I. (2016). In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. Journal of Intercultural Ethnopharmacology, 5(4), 343.
Patel, J. J., Acharya, S. R., & Acharya, N. S. (2014). Clerodendrum serratum (L.) Moon. - A review on traditional uses, phytochemistry and pharmacological activities. Journal of Ethnopharmacology, 154(2), 268-285. https://doi.org/10.1016/j.jep.2014.03.071
Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30, 11-26. https://doi.org/10.1007/s12291-014-0446-0
Reiter, E., Jiang, Q., & Christen, S. (2007). Anti-inflammatory properties of α-and γ tocopherol. Molecular Aspects of Medicine, 28(5-6), 668-691. https://doi.org/10.1016/j.mam.2007.01.003
Saleh-e-In, M. M., Roy, A., Al-Mansur, M. A., Hasan, C. M., Rahim, M. M., Sultana, N., Ahmed, S., Islam, M. R., & van Staden, J. (2019). Isolation and in silico prediction of potential drug-like compounds from Anethum sowa L. root extracts targeted towards cancer therapy. Computational Biology and Chemistry, 78, 242-259. https://doi.org/10.1016/j.compbiolchem.2018.11.025
Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), R453-R462. https://doi.org/10.1016/j.cub.2014.03.034
Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Cryst D: Biological Crystallography, 60(8), 1355-1363. https://doi.org/10.1107/S0907444904011679
Shrivastava, N., & Patel, T. (2007). Clerodendrum and healthcare: an overview. Medicinal and Aromatic Plant Science and Biotechnology, 1(1), 142-150.
Singh, U., & Jialal, I. (2004). Anti‐inflammatory effects of α‐tocopherol. Annals of the New York Academy of Sciences, 1031(1), 195-203. https://doi.org/10.1196/annals.1331.019
Tsuzuki, T., Tokuyama, Y., Igarashi, M., & Miyazawa, T. (2004). Tumor growth suppression by α-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via lipid peroxidation. Carcinogenesis, 25(8), 1417-1425. https://doi.org/10.1093/carcin/bgh109
Wang, W.-L., Chen, S.-M., Lee, Y.-C., & Chang, W.-W. (2022). Stigmasterol inhibits cancer stem cell activity in endometrial cancer by repressing IGF1R/mTOR/AKT pathway. Journal of Functional Foods, 99, 105338. https://doi.org/10.1016/j.jff.2022.105338
Wolfe, K. L., Kang, X., He, X., Dong, M., Zhang, Q., & Liu, R. H. (2008). Cellular antioxidant activity of common fruits. Journal of Agricultural and Food Chemistry, 56(18), 8418-8426. https://doi.org/10.1021/jf801381y
Yanuar, A., Pratiwi, I., & Syahdi, R. R. (2018). In silico activity analysis of saponins and 2, 5-piperazinedione from marine organism against murine double minute-2 inhibitor and procaspase-3 activator. Journal of Young Pharmacists, 10(2s), S16-S19.
Yoshida, Y., & Niki, E. (2003). Antioxidant effects of phytosterol and its components. Journal of Nutritional Science and Vitaminology, 49(4), 277-280. https://doi.org/10.3177/jnsv.49.277
Published
How to Cite
Issue
Section
Copyright (c) 2024 Pallab Kar, Ayodeji O. Oriola, Adebola O. Oyedeji

This work is licensed under a Creative Commons Attribution 4.0 International License.