Chemoprofiling of Cucumis pubescens Willd. fruits

Authors

  • R. Kavitha PG & Research Department of Chemistry, Sri Sarada College for Women (Autonomous), Salem-636 016, Tamil Nadu, India
  • T. Sundari PG & Research Department of Chemistry, Sri Sarada College for Women (Autonomous), Salem-636 016, Tamil Nadu, India
  • P. Srinivasan PG & Research Department of Botany, Arignar Anna Government Arts College, Namakkal-637002, Tamil Nadu, India

DOI:

https://doi.org/10.25081/jp.2024.v16.8938

Keywords:

Cucumis pubescens, HPLC, Spectral analysis, GC-MS, Bioactive compounds

Abstract

Cucumis pubescens, a notable therapeutic plant belonging to the Cucurbitaceae family is extensively utilized in South India’s habitual medicine. Despite its medicinal importance, the phytochemical content of this plant remains largely unexplored. The objective of the present study was to examine the phytochemical composition of the fruits of C. pubescens. Initially, HPLC analysis was employed to separate secondary metabolites, revealing seven major phytochemical fractions. The use of a suitable mobile phase system (Acetic acid: Acetonitrile: Water, 4:2:10) at 280 nm facilitated clear isolation. Subsequent spectral analyses confirmed the presence of bioactive compounds. UV-Vis spectral analysis indicated the abundance of flavonoids and tannins. The presence of functional groups, for instance, C=O (carbonyl), C-C (benzene), and Ar-C-H (aromatic hydrocarbon) were validated through FTIR. Further analysis through GC-MS identified 23 bioactive compounds, with quercetin and kaempferol being the predominant ones, followed by gallic acid and caffeic acid. The pharmacological activity of these compounds underscores the therapeutic potential of C. pubescens. In conclusion, this study highlights the rich chemical diversity of C. pubescens, suggesting its potential as a valuable medicinal species with pharmaceutical significance.

Downloads

Download data is not yet available.

References

Adebayo-Gege, G., Alicha, V., Omayone, T. O., Nzekwe, S. C., Irozuoke, C. A., Ojo, O. A., & Ajayi, A. F. (2022). Anti-atherogenic and cardio-protective properties of sweet melon (Cucumis melo. L. Inodorus) seed extract on high fat diet induced obesity in male wistar rats. BMC Complementary Medicine and Therapies, 22, 334. https://doi.org/10.1186/s12906-022-03793-w

Alam, M., Ahmed, S., Elasbali, A. M., Adnan, M., Alam, S., Hassan, M. I., & Pasupuleti, V. R. (2022). Therapeutic implications of caffeic acid in cancer and neurological diseases. Frontiers in Oncology, 12, 860508. https://doi.org/10.3389/fonc.2022.860508

Ani, O. N., Achikanu, C. E., & Asogwa, K. K. (2022). Evaluation of bioactive compound content, in-vitro antioxidant and anti-inflammatory effects of ethanol extract of the seed of Cucumis metuliferus fruit. GSC Biological and Pharmaceutical Sciences, 18(3), 113-125. https://doi.org/10.30574/gscbps.2022.18.3.0098

Araya, E. M., Adamu, B. A., Periasamy, G., Sintayehu, B., & Hiben, M. G. (2019). In vivo hepatoprotective and in vitro radical scavenging activities of Cucumis ficifolius A. rich root extract. Journal of Ethnopharmacology, 242, 112031. https://doi.org/10.1016/j.jep.2019.112031

Bationo, R. K., Dabiré, C. M., Hema, A., Nébié, R. H. C., Palé, E., & Nacro, M. (2022). HPTLC/HPLC-mass spectrometry identification and NMR characterization of major flavonoids of wild lemongrass (Cymbopogon giganteus) collected in Burkina Faso. Heliyon, 8(8), E10103. https://doi.org/10.1016/j.heliyon.2022.e10103

Bisognin, D. A. (2002). Origin and evolution of cultivated cucurbits. Ciência Rural, 32(4), 715-723. https://doi.org/10.1590/S0103-84782002000400028

Chen, L., Huang, G., & Hu, J. (2018). Preparation, deproteinization, characterisation, and antioxidant activity of polysaccharide from cucumber (Cucumis saticus L.). International Journal of Biological Macromolecules, 108, 408-411. https://doi.org/10.1016/j.ijbiomac.2017.12.034

Demsie, D. G., Yimer, E. M., Berhe, A. H., Altaye, B. M., & Berhe, D. F. (2019). Anti-nociceptive and anti-inflammatory activities of crude root extract and solvent fractions of Cucumis ficifolius in mice model. Journal of Pain Research, 12, 1399-1409. https://doi.org/10.2147/JPR.S193029

dos Santos, J. S., Cirino, J. P. G., de Oliveira Carvalho, P., & Ortega, M. M. (2021). The pharmacological action of kaempferol in central nervous system diseases: a review. Frontiers in Pharmacology, 11, 565700. https://doi.org/10.3389/fphar.2020.565700

Ezzat, S. M., Raslan, M., Salama, M. M., Menze, E. T., & El Hawary, S. S. (2019). In vivo anti-inflammatory activity and UPLC-MS/MS profiling of the peels and pulps of Cucumis melo var. cantalupensis and Cucumis melo var. reticulatus. Journal of Ethnopharmacology, 237, 245-254. https://doi.org/10.1016/j.jep.2019.03.015

Fathima, M. S. A., & Johnson, M. (2018). Spectroscopic studies on Pouzolzia wightii Benn. International Journal of Pharmacy and Pharmaceutical Sciences, 10(3), 124-132. https://doi.org/10.22159/ijpps.2018v10i3.19336

Gamble, J. S. (1935). Flora of the Presidency of Madras (Issued in II parts: 1-7 by Gamble, 8-11 by C.E.C. Fischer) (Vols. 1-3). Calcutta, India: Botanical Survey of India.

Griffiths, P. R., & de Haseth, J. A. (1986). Fourier Transform Infrared Spectrometry. (2nd ed.). New York: US: John Wiley and Sons, Inc.

Hendry, S. H. C., Schwark, H. D., Jones, E. G., & Yan, J. (1987). Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. The Journal of Neuroscience, 7(5), 1503-1519. https://doi.org/10.1523/JNEUROSCI.07-05-01503.1987

Héthelyi, E., Tétényi, P., Dabi, E., & Dános, B. (1987). The role of mass spectrometry in medicinal plant research. Biomedical & Environmental Mass Spectrometry, 14(11), 627-632. https://doi.org/10.1002/bms.1200141110

Huang, R., Zhang, Y., Shen, S., Zhi, Z., Cheng, H., Chen, S., & Ye, X. (2020). Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: An in vitro study. Food Chemistry, 326, 126785. https://doi.org/10.1016/j.foodchem.2020.126785

Jeffrey, C. (1990). An outline classification of the Cucurbitaceae. In D. M. Bates, R. W. Robinson & C. Jeffrey (Eds.), Biology and Utilization of the Cucurbitaceae (pp. 449-463) Ithaca, US: Cornell University Press. http://www.jstor.org/stable/10.7591/j.ctvr7f7q4.5

Kaczmarek-Szczepańska, B., Grabska-Zielińska, S., & Michalska-Sionkowska, M. (2023). The Application of Phenolic Acids in the Obtainment of Packaging Materials Based on Polymers - A Review. Foods, 12(6), 1343. https://doi.org/10.3390/foods12061343

Karpagakalyaani, G., Magdaline, J. D., & Chithambarathanu, T. (2022). Comparative spectral (FT-IR, FT-Raman, UV) investigations, HOMO–LUMO, NBO and in-silico docking analysis of Nikethamide, niazid and 2-Mercaptonicotinic acid. Journal of Molecular Structure, 1252, 132032. https://doi.org/10.1016/j.molstruc.2021.132032

Lan, C.-Y., Chen, S.-Y., Kuo, C.-W., Lu, C.-C., & Yen, G.-C. (2019). Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells. Journal of Food and Drug Analysis, 27(4), 887-896. https://doi.org/10.1016/j.jfda.2019.07.001

Ma, Q., & Wei, R. (2021). A new anthraquinone-aurone adduct with hepatoprotective activity from the fruits of Cucumis bisexualis. Chemistry of Natural Compounds, 57, 828-831. https://doi.org/10.1007/s10600-021-03490-z

Mallek-Ayadi, S., Bahloul, N., & Kechaou, N. (2017). Characterization, phenolic compounds and functional properties of Cucumis melo L. peels. Food chemistry, 221, 1691-1697. https://doi.org/10.1016/j.foodchem.2016.10.117

Mathew, K. M. (1983). The flora of Tamil Nadu Carnatic, Parts (1-3). Tirudhirapalli, India: Rapient Herbarium.

Mukrimin, M., Conrad, A. O., Kovalchuk, A., Julkunen-Tiitto, R., Bonello, P., & Asiegbu, F. O. (2019). Fourier-transform infrared (FT-IR) spectroscopy analysis discriminates asymptomatic and symptomatic Norway spruce trees. Plant Science, 289, 110247. https://doi.org/10.1016/j.plantsci.2019.110247

Nair, N. C., & Henry, A. N. (1983). Flora of Tamil Nadu, India. Series I: Analysis. (Vol. 2) Calcutta, India: Botanical Survey of India.

Nkwocha, C. C., Ogugofor, M. O., Chukwuma, I. F., & Njoku, O. U. (2022). Identification and characterization of phytochemicals and constituents in Desmodium velutinum stem using high-performance liquid chromatography (HPLC). Pharmacological Research - Modern Chinese Medicine, 3, 100090. https://doi.org/10.1016/j.prmcm.2022.100090

Olaniyan, M. F., & Afolabi, T. (2018). Scavenging antioxidative bioactivities of cucumber (Cucumis sativus) fruit juice in rabbits overdosed with amoxicillin. Biomedical and Biotechnology Research Journal (BBRJ), 2(4), 276-280. https://doi.org/10.4103/bbrj.bbrj_119_18

Olasehinde, O. R., Afolabi, O. B., Owolabi, O. V., Akawa, A. B., & Omiyale, O. B. (2022). GC–MS analysis of phytochemical constituents of methanolic fraction of Annona muricata leaf and its inhibition against two key enzymes linked to type II diabetes. Scientific African, 16, e01178. https://doi.org/10.1016/j.sciaf.2022.e01178

Patle, T. K., Shrivas, K., Kurrey, R., Upadhyay, S., Jangde, R., & Chauhan, R. (2020). Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 242, 118717. https://doi.org/10.1016/j.saa.2020.118717

Prasathkumar, M., Anisha, S., Dhrisya, C., Becky, R., & Sadhasivam, S. (2021). Therapeutic and pharmacological efficacy of selective Indian medicinal plants–a review. Phytomedicine Plus, 1(2), 100029. https://doi.org/10.1016/j.phyplu.2021.100029

Rajasree, R. S., Ittiyavirah, S. P., Naseef, P. P., Kuruniyan, M. S., Anisree, G. S., & Elayadeth-Meethal, M. (2021). An evaluation of the antioxidant activity of a methanolic extract of Cucumis melo L. fruit (F1 hybrid). Separations, 8(8), 123. https://doi.org/10.3390/separations8080123

Reggi, S., Giromini, C., Dell’Anno, M., Baldi, A., Rebucci, R., & Rossi, L. (2020). In vitro digestion of chestnut and quebracho tannin extracts: Antimicrobial effect, antioxidant capacity and cytomodulatory activity in swine intestinal IPEC-J2 cells. Animals, 10(2), 195. https://doi.org/10.3390/ani10020195

Scano, P. (2021). Characterization of the medium infrared spectra of polyphenols of red and white wines by integrating FT IR and UV–Vis spectral data. Lwt, 147, 111604. https://doi.org/10.1016/j.lwt.2021.111604

Steinmann, D., & Ganzera, M. (2011). Recent advances on HPLC/MS in medicinal plant analysis. Journal of Pharmaceutical and Biomedical Analysis, 55(4), 744-757. https://doi.org/10.1016/j.jpba.2010.11.015

Swaminathan, G., Sundaram, R. S., Mamatha, M., & Vaijayanthimala, P. (2015). Evaluation of in vitro anticancer activity of Cucumis sativus Linn leaves. International Journal of Research in Pharmacology and Pharmacotherapeutics, 4(2), 223-229.

Tuama, A. A., & Mohammed, A. A. (2019). Phytochemical screening and in vitro antibacterial and anticancer activities of the aqueous extract of Cucumis sativus. Saudi Journal of Biological Sciences, 26(3), 600-604. https://doi.org/10.1016/j.sjbs.2018.07.012

Wahid, M., Saqib, F., Chicea, L., Ahmedah, H. T., Sajer, B. H., Marc, R. A., Pop, O. L., Moga, M., & Gavris, C. (2022). Metabolomics analysis delineates the therapeutic effects of hydroethanolic extract of Cucumis sativus L. seeds on hypertension and isoproterenol-induced myocardial infarction. Biomedicine & Pharmacotherapy, 148, 112704. https://doi.org/10.1016/j.biopha.2022.112704

Wahid, S., Alqahtani, A., & Khan, R. A. (2021). Analgesic and anti-inflammatory effects and safety profile of Cucurbita maxima and Cucumis sativus seeds. Saudi Journal of Biological Sciences, 28(8), 4334-4341. https://doi.org/10.1016/j.sjbs.2021.04.020

Yang, D., Wang, T., Long, M., & Li, P. (2020). Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxidative Medicine and Cellular Longevity, 2020, 8825387. https://doi.org/10.1155/2020/8825387

Yano, K., Sakamoto, Y., Hirosawa, N., Tonooka, S., Katayama, H., Kumaido, K., & Satomi, A. (2003). Applications of Fourier transform infrared spectroscopy, Fourier transform infrared microscopy and near infrared spectroscopy to cancer research. Spectroscopy, 17, 315-321. https://doi.org/10.1155/2003/329478

Ye, J. (2009). Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine. Chemical Papers, 63(5), 506-511. https://doi.org/10.2478/s11696-009-0056-0

Published

25-07-2024

How to Cite

Kavitha, R., Sundari, T., & Srinivasan, P. (2024). Chemoprofiling of Cucumis pubescens Willd. fruits. Journal of Phytology, 16, 127–132. https://doi.org/10.25081/jp.2024.v16.8938

Issue

Section

Articles