Genetic diversity of wheat (Triticum aestivum L.) genotypes with grain zinc and iron content for yield and its attributing traits
DOI:
https://doi.org/10.25081/jp.2024.v16.8900Keywords:
Wheat (Triticum aestivum L.), Zinc and Iron, Heritability, Genetic diversity, YieldAbstract
Wheat (Triticum aestivum L.) is crucial for global food security, providing essential calories for about one-third of the world’s population and a great source of micronutrients like zinc (Zn) and iron (Fe). This study focuses on the screening of thirty wheat germplasms for Zn and Fe content, and their association with yield and related traits. Analysis of variance showed significant variation among the genotypes for all studied traits including Zn and Fe content. The phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were very close for micronutrient indicating fruitful for selection of these traits, whereas great differences for yield and yield attributing traits. High heritability coupled with high genetic advance was also observed for Zn and Fe content, but low for yield per plant. Genotype BAW897 and DSN117 for Zn, BAW1006 and SADH-22 for Fe and BAW1006 and Sonalika for yield were selected based on the mean performance, and BAW667 was best considering all three traits, suggesting their suitability and adaptability for cultivation to fulfil the agricultural demand. Zn and Fe content showed negative associations with canopy temperature, chlorophyll content yield and its different contributing characters. Principal Component Analysis revealed that zinc had a positive value in PCA1, iron showed a positive value in PCA2, and total yield was positively associated with PCA2, with the first five components explaining 77.1% of the cumulative variance. The thirty genotypes were clustered in four major groups, having maximum number in cluster 1 and minimum in cluster 4. Cluster 1 consists of the most promising genotypes having higher micronutrient content and high yielding ability. The identified genotypes can be utilized in forthcoming breeding to ensure both food and nutritional security in Bangladesh.
Downloads
References
Ali, Z., Mujeeb-Kazi, A., Quraishi, U. M., & Malik, R. N. (2018). Deciphering adverse effects of heavy metals on diverse wheat germplasm on irrigation with urban wastewater of mixed municipal-industrial origin. Environmental Science and Pollution Research, 25, 18462-18475. https://doi.org/10.1007/s11356-018-1996-0
Amiri, R., Bahraminejad, S., Sasani, S., Jalali-Honarmand, S., & Fakhri, R. (2015). Bread wheat genetic variation for grain’s protein, iron and zinc concentrations as uptake by their genetic ability. European Journal of Agronomy, 67, 20-26. https://doi.org/10.1016/j.eja.2015.03.004
Ansari, S. A., & Thapa, S. (2019). Biofortification of Food Crops: An Approach towards Improving Nutritional Security in South Asia. International Journal of Advances in Agricultural Science and Technology, 6(12), 23-33.
Badakhshan, H., Moradi, N., Mohammadzadeh, H., & Zakeri, M. R. (2013). Genetic variability analysis of grains Fe, Zn and beta-carotene concentration of prevalent wheat varieties in Iran. International Journal of Agriculture and Crop Sciences, 6(2), 57-62.
Borrill, P., Connorton, J. M., Balk, J., Miller, A. J., Sanders, D., & Uauy, C. (2014). Biofortification of wheat grain with iron and zinc: Integrating novel genomic resources and knowledge from model crops. Frontiers in Plant Science, 5, 53. https://doi.org/10.3389/fpls.2014.00053
Bouis, H. E. (2002). Plant breeding: A new tool for fighting micronutrient malnutrition. The Journal of Nutrition, 132(3), 491S-494S. https://doi.org/10.1093/jn/132.3.491S
Bouis, H. E. (2003). Micronutrient fortification of plant through plant breeding: can it improve nutrition in man at low cost?. Proceedings of Nutrition Society, 62(2), 403-411. https://doi.org/10.1079/PNS2003262
Cakmak, I., & Kutman, U. B. (2018). Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science, 69(1), 172-180. https://doi.org/10.1111/ejss.12437
de Benoist, B., McLean, E., Egli, I., & Cogswell, M. (2008). Worldwide prevalence of anaemia 1993-2005: WHO Global Database on Anaemia. Retrieved from https://iris.who.int/handle/10665/43894
FAO. (2002). Land respond appraisal of Bangladesh for Agricultural Department. Report 1. Agro-ecology Regions of Bangladesh. Rome, Italy: United Nations Development Programme and Food and Agriculture Organization.
FPMU. (2011). Bangladesh country investment plan: A road map towards investment in agriculture, food security and nutrition. Dhaka, Bangladesh: Food Planning and Monitoring Unit, Ministry of Food and Disaster Management.
Goel, S., Singh, B., Grewal, S., Jaat, R. S., & Singh, N. K. (2018). Variability in Fe and Zn content among Indian wheat landraces for improved nutritional quality. Indian Journal of Genetics and Plant Breeding, 78(4), 426-432. https://doi.org/10.31742/IJGPB.78.4.4
Gomez-Becerra, H. F., Yazici, A., Ozturk, L., Budak, H., Peleg, Z., Morgounov, A., Fahima, T., Saranga, Y., & Cakmak, I. (2010). Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica, 171, 39-52. https://doi.org/10.1007/s10681-009-9987-3
Gu, Z., Eils, R., & Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics, 32(18), 2847-2849. https://doi.org/10.1093/bioinformatics/btw313
Gupta, O. P., Pandey, V., Narwal, S., Sharma, P., Ram, S., & Singh, G. P. (2020). Wheat and Barley Grain Biofortification. (1st ed.). Sawston, UK: Woodhead Publishing.
Gupta, O. P., Singh, A. K., Singh, A., Singh, G. P., Bansal, K. C., & Datta, S. K. (2022). Wheat Biofortification: Utilizing Natural Genetic Diversity, Genome-Wide Association Mapping, Genomic Selection, and Genome Editing Technologies. Frontier Nutrition, 9, 826131. https://doi.org/10.3389/fnut.2022.826131
Heidari, P., Etminan, A., Azizinezhad, R., & Khosroshahli, M. (2017). Genomic variation studies in durum wheat (Triticum turgidum ssp. durum) using CBDP, SCoT and ISSR markers. Indian Journal of Genetics, 77(3), 379-386. https://doi.org/10.5958/0975-6906.2017.00051.7
IDRC. (2010). Facts and Figures on Food and Biodiversity. Canada: IDRC Communications, International Development Research Centre. Retrieved from https://www.idrc.ca/en/research-in action/facts-figures-food-and-biodiversity
Jahiruddin, M., Bhuiya, Z. H., Haque, M. S., & Rahman, L. (1981). Effect of rates and methods of zinc application on rice. Madras Agricultural Journal, 68(4), 211-216.
Khokhar, J. S., King, J., King, I. P., Young, S. D., Foulkes, M. J., De Silva, J., Weerasinghe, M., Mossa, A., Griffiths, S., Riche, A. B., Hawkesford, M., Shewry, P., & Broadley, M. R. (2020). Novel sources of variation in grain Zinc (Zn) concentration in bread wheat germplasm derived from Watkins landraces. PLoS One, 15(2), e0229107. https://doi.org/10.1371/journal.pone.0229107
Krishnaswamy, K., Vaidya, R., Rajgopal, G., & Vasudevan, S. (2016). Diet and Nutrition in the Prevention of Non-Communicable Diseases. Proceedings of the Indian National Science Academy, 82(5), 1477-1494. https://doi.org/10.16943/ptinsa/2016/48881
Morgounov, A., Gómez-Becerra, H. F., Abugalieva, A., Dzhunusova, M., Yessimbekova, M., Muminjanov, H., Zelenskiy, Y., Ozturk, L., & Cakmak, I. (2007). Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 155, 193-203. https://doi.org/10.1007/s10681-006-9321-2
Pandey, A., Khan, M. K., Hakki, E. E., Thomas, G., Hamurcu, M., Gezgin, S., Gizlenci, O., & Akkaya, M. S. (2016). Assessment of genetic variability for grain nutrients from diverse regions: potential for wheat improvement. SpringerPlus, 5, 1912. https://doi.org/10.1186/s40064-016-3586-2
Peleg, Z., Cakmak, I., Ozturk, L., Yazici, A., Jun, Y., Budak, H., Korol, A. B., Fahima, T., & Saranga, Y. (2009). Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat ×wild emmer wheat RIL population. Theoretical and Applied Genetics, 119, 353-369. https://doi.org/10.1007/s00122-009-1044-z
Peleg, Z., Saranga, Y., Yazici, A., Fahima, T., Ozturk, L., & Cakmak, I. (2008). Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant and Soil, 306, 57-67. https://doi.org/10.1007/s11104-007-9417-z
Peterson, R. E. (1965). Wheat: botany, cultivation and utilization. London, UK: Leonard Hill.
Pujar, M., Govindaraj, M., Gangaprasad, S., Knatti, A., & Shivade, H. (2020). Genetic variation and diversity for grain iron, zinc, protein and agronomic traits in advanced breeding lines of pearl millet [Pennisetum glaucum (L.) R. Br.] for biofortification breeding. Genetic Resource and Crop Evolution, 67, 2009-2022. https://doi.org/10.1007/s10722-020-00956-x
Rai, K. N., Gupta, S. K., Sharma, R., Govindaraj, M., Rao, A. S., Shivade, H., & Bonamigo, L. A. (2014). Pearl millet breeding lines developed at ICRISAT: a reservoir of variability and useful source of non target traits. SAT eJournal, 1(1), 1-13.
Rajshree, & Singh, S. K. (2018). Assessment of Genetic Diversity in Promising Bread Wheat (Triticum aestivum L.) Genotypes. International Journal of Current Microbiology and Applied Sciences, 7(3), 676-684. https://doi.org/10.20546/ijcmas.2018.703.079
Samsuddin, A. K. M. (1985). Genetic diversity in relation to heterosis and combining analysis in spring wheat. Theoretical and Applied Genetics, 70, 306-308. https://doi.org/10.1007/BF00304916
Sanni, K. A., Fawole, I., Ogunbayo, S. A., Tia, D. D., Somado, E. A., Futakuchi, K., Sie, M., Nwilene, F. E., & Guei, R. G. (2012). Multivariate analysis of diversity of landrace rice germplasm. Crop Science, 52(2), 494-504. https://doi.org/10.2135/cropsci2010.12.0739
Shewry, P. R., & Hey, S. J. (2015). The contribution of wheat to human diet and health. Food and Energy Security, 4(3), 178-202. https://doi.org/10.1002/fes3.64
Solomons, N. W. (2003). Zinc deficiency. In B. Ceballero (Eds.), Encyclopedia of Food Sciences and Nutrition (pp. 6277-6283) Oxford, England: Elsevier Science Limited. https://doi.org/10.1016/B0-12-227055-X/01310-9
Tripathi, S. N., Marker, S., Pandey, P., Jaiswal, K. K., & Tiwari, D. K. (2011). Relationship between some morphological and physiological traits with grain yield in bread wheat (Triticum aestivum L.em.Thell.). Trends in Applied Science Research, 6(9), 1037-1045.
Vagadiya, K. J., Dhedhi, K. K., & Joshi, H. J. (2013). Genetic variability, heritability and genetic advance of grain yield in pearl millet. Agricultural Science Digest, 33(3), 223-225. https://doi.org/10.5958/j.0976-0547.33.3.013
Velu, G., Ortiz-Monasterio, I., Singh, R. P., & Payne, T. (2011). Variation for grain micro-nutrients concentration in wheat core-collection accessions of diverse origin. Asian Journal of Crop Science, 3(1), 43-48. https://doi.org/10.3923/ajcs.2011.43.48
Wuehler, S. E., Peerson, J. M., & Brown, K. H. (2005). Use of national food balance data to estimate the adequacy of zinc in national food supplies: methodology and regional estimates. Public Health Nutrition, 8(7), 812-819. https://doi.org/10.1079/PHN2005724
Zhao, F. J., Su, Y. H., Dunham, S. J., Rakszegi, M., Bedo, Z., McGrath, S. P., & Shewry, P. R. (2009). Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. Journal of Cereal Science, 49(2), 290-295. https://doi.org/10.1016/j.jcs.2008.11.007
Published
How to Cite
Issue
Section
Copyright (c) 2024 Shanzida Khan Sharna, Md. Tahsinul Anwar, Shirin Akhter, K. M. Mohiuddin, G. H. M. Sagor

This work is licensed under a Creative Commons Attribution 4.0 International License.