Optimizing suitable solvent for phenylpropanoid extraction and antioxidant activities in Agastache rugosa hairy roots

Authors

  • Bao Van Nguyen Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
  • Jinsu Lim Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
  • Kihyun Kim Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
  • Hyewon Seo Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
  • Ramaraj Sathasivam Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
  • Jong Seok Park Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea, Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
  • Jae Kwang Kim Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
  • Sang Un Park Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea, Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea, Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea,

DOI:

https://doi.org/10.25081/jp.2024.v16.8894

Keywords:

Agastache rugosa, Extraction of different solvents, Antioxidants, Phenolics, Flavonoids, Phenylpropanoids

Abstract

Agrobacterium-mediated hairy roots (HRs) can induce genetic stability, rapid growth, and the synthesis of bioactive compounds in plant roots. Agastache rugosa is otherwise called Korea Mint and several studies have reported that this plant has been used for the treatment of various diseases due to the presence of a variety of bioactive compounds. A. rugosa HRs are rich in secondary metabolites than the seedling roots, and the HRs extract might be more useful in pharmacology, especially in cosmetology. This study aimed to select the suitable solvent for the extraction of phenylpropanoid compounds, total phenolic (TP), flavonoid (TF), and antioxidant activities (DPPH, ABTS scavenging activity, and reducing power assay). In this study, we extracted the A. rugosa HRs with three different extracts of solvent (water, MeOH, and EtOH) of A. rugosa HRs and analyzed the phenylpropanoid compounds, TP, TF, and antioxidant activities. The result showed that 70% MeOH extracts showed the highest activities in all assays, followed by the 70% EtOH, and water extracts. In addition, 70% of MeOH extracts showed the highest TP and TF (46.14±0.25 GAE mg/g DW and 65.46±1.41 QE mg/g DW, respectively) contents, which was 1.96- and 1.76- times higher than that of the water extracts. The phenylpropanoids in A. rugosa HR extracts were identified by using HPLC, and the results showed that 70% MeOH and EtOH showed the highest contents. Regarding these results, we can conclude that 70% MeOH is the optimal solvent to extract the A. rugosa HRs for the highest phenylpropanoid, TP, TF content, and antioxidant activities. This study might be useful for producing useful compounds at an industrial scale.

Downloads

Download data is not yet available.

References

Abdulkhaleq, L. A., Assi, M. A., Noor, M. H. M., Abdullah, R., Saad, M. Z., & Taufiq-Yap, Y. H. (2017). Therapeutic uses of epicatechin in diabetes and cancer. Veterinary World, 10(8), 869-872. https://doi.org/10.14202/vetworld.2017.869-872

Abubakar, A. R., & Haque, M. (2020). Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy and Bioallied Sciences, 12(1), 1-10. https://doi.org/10.4103/jpbs.JPBS_175_19

Antolovich, M., Prenzler, P. D., Patsalides, E., McDonald, S., & Robards, K. (2002). Methods for testing antioxidant activity. Analyst, 127(1), 183-198. https://doi.org/10.1039/B009171P

Bae, G.-U., Seo, D.-W., Kwon, H.-K., Lee, H. Y., Hong, S., Lee, Z.-W., Ha, K.-S., Lee, H.-W., & Han, J.-W. (1999). Hydrogen peroxide activates p70S6k signaling pathway. Journal of Biological Chemistry, 274(46), 32596-32602. https://doi.org/10.1074/jbc.274.46.32596

Bi, B., Tang, J., Han, S., Guo, J., & Miao, Y. (2017). Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination. BMC Plant Biology, 17, 99. https://doi.org/10.1186/s12870-017-1048-9

Biswas, D., Chakraborty, A., Mukherjee, S., & Ghosh, B. (2023). Hairy root culture: a potent method for improved secondary metabolite production of Solanaceous plants. Frontiers in Plant Science, 14, 1197555. https://doi.org/10.3389/fpls.2023.1197555

Chen, C. (2016). Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxidative Medicine and Cellular Longevity, 2016, 3571614. https://doi.org/10.1155/2016/3571614

Choe, S. Y., & Yang, K. H. (1982). Toxicological studies of antioxidants, butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA). Korean Journal of Food Science and Technology, 14(3), 283-288.

Colbert, L. B., & Decker, E. A. (1991). Antioxidant activity of an ultrafiltration permeate from acid whey. Journal of Food Science, 56(5), 1248-1250. https://doi.org/10.1111/j.1365-2621.1991.tb04744.x

Desta, K. T., Kim, G.-S., Kim, Y.-H., Lee, W. S., Lee, S. J., Jin, J. S., El‐Aty, A. M. A., Shin, H.-C., Shim, J.-H., & Shin, S. C. (2016). The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem, and root. Biomedical Chromatography, 30(2), 225-231. https://doi.org/10.1002/bmc.3539

Douglas, C. J. (1996). Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends in Plant Science, 1(6), 171-178. https://doi.org/10.1016/1360-1385(96)10019-4

Fu, L., Xu, B.-T., Xu, X.-R., Gan, R.-Y., Zhang, Y., Xia, E.-Q., & Li, H.-B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry, 129(2), 345-350. https://doi.org/10.1016/j.foodchem.2011.04.079

Halder, M., Sarkar, S., & Jha, S. (2019). Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Engineering in Life Sciences, 19, 880-895. https://doi.org/10.1002/elsc.201900058

Halim, M. A., Kanan, K. A., Nahar, T., Rahman, M. J., Ahmed, K. S., Hossain, H., Mozumder, N. H. M. R., & Ahmed, M. (2022). Metabolic profiling of phenolics of the extracts from the various parts of blackberry plant (Syzygium cumini L.) and their antioxidant activities. LWT, 167, 113813. https://doi.org/10.1016/j.lwt.2022.113813

Higdon, J. V., Delage, B., Williams, D. E., & Dashwood, R. H. (2007). Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacological Research, 55(3), 224-236. https://doi.org/10.1016/j.phrs.2007.01.009

Hofer, S., Geisler, S., Lisandrelli, R., Ngoc, H. N., Ganzera, M., Schennach, H., Fuchs, D., Fuchs, J. E., Gostner, J. M., & Kurz, K. (2020). Pharmacological targets of kaempferol within inflammatory pathways—a hint towards the central role of tryptophan metabolism. Antioxidants, 9(2), 180. https://doi.org/10.3390/antiox9020180

Huang, W.-H., Lee, A.-R., & Yang, C.-H. (2006). Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis Georgi. Bioscience, Biotechnology, and Biochemistry, 70(10), 2371-2380. https://doi.org/10.1271/bbb.50698

Kashyap, P., Shikha, D., Thakur, M., & Aneja, A. (2022). Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. Journal of Food Biochemistry, 46(4), e13950. https://doi.org/10.1111/jfbc.13950

Korkina, L. G. (2007). Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cellular and Molecular Biology, 53(1), 15-25. https://doi.org/10.1170/T772

Lee, H.-H., Kim, J.-S., Jeong, J.-H., Park, S. M., Sathasivam, R., Lee, S. Y., & Kim, C. S. (2022). Effect of different solvents on the extraction of compounds from different parts of Undaria pinnatifida (Harvey) Suringar. Journal of Marine Science and Engineering, 10(9), 1193. https://doi.org/10.3390/jmse10091193

Lee, S. Y., Xu, H., Kim, Y. K., & Park, S. U. (2008). Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World Journal of Microbiology and Biotechnology, 24, 969-972. https://doi.org/10.1007/s11274-007-9560-y

Lim, J., Kim, K., Kwon, D. Y., Kim, J. K., Sathasivam, R., & Park, S. U. (2024). Effects of different solvents on the extraction of phenolic and flavonoid compounds, and antioxidant activities, in Scutellaria baicalensis hairy roots. Horticulturae, 10(2), 160. https://doi.org/10.3390/horticulturae10020160

Ly, T. N., Shimoyamada, M., & Yamauchi, R. (2006). Isolation and characterization of rosmarinic acid oligomers in Celastrus hindsii Benth leaves and their antioxidative activity. Journal of Agricultural and Food Chemistry, 54(11), 3786-3793. https://doi.org/10.1021/jf052743f

Makhzoum, A. B., Sharma, P., Bernards, M. A., & Trémouillaux-Guiller, J. (2013). Hairy roots: an ideal platform for transgenic plant production and other promising applications. Phytochemicals, Plant Growth, and the Environment, 42, 95-142. https://doi.org/10.1007/978-1-4614-4066-6_6

Michiels, J. A., Kevers, C., Pincemail, J., Defraigne, J. O., & Dommes, J. (2012). Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chemistry, 130(4), 986-993. https://doi.org/10.1016/j.foodchem.2011.07.117

Ortiz, A., & Sansinenea, E. (2023). Phenylpropanoid derivatives and their role in plants’ health and as antimicrobials. Current Microbiology, 80, 380. https://doi.org/10.1007/s00284-023-03502-x

Park, C. H., Park, Y. E., Yeo, H. J., Park, N. I., & Park, S. U. (2021a). Effect of light and dark on the phenolic compound accumulation in Tartary buckwheat hairy roots overexpressing ZmLC. International Journal of Molecular Sciences, 22(9), 4702. https://doi.org/10.3390/ijms22094702

Park, C. H., Yeo, H. J., Baskar, T. B., Park, Y. E., Park, J. S., Lee, S. Y., & Park, S. U. (2019). In vitro antioxidant and antimicrobial properties of flower, leaf, and stem extracts of Korean mint. Antioxidants, 8(3), 75. https://doi.org/10.3390/antiox8030075

Park, Y.-E., Park, C.-H., Yeo, H.-J., Chung, Y.-S., & Park, S.-U. (2021b). Resveratrol biosynthesis in hairy root cultures of tan and purple seed coat peanuts. Agronomy, 11(5), 975. https://doi.org/10.3390/agronomy11050975

Pei, T., Yan, M., Huang, Y., Wei, Y., Martin, C., & Zhao, Q. (2022). Specific flavonoids and their biosynthetic pathway in Scutellaria baicalensis. Frontiers in Plant Science, 13, 866282. https://doi.org/10.3389/fpls.2022.866282

Periferakis, A., Periferakis, K., Badarau, I. A., Petran, E. M., Popa, D. C., Caruntu, A., Costache, R. S., Scheau, C., Caruntu, C., & Costache, D. O. (2022). Kaempferol: antimicrobial properties, sources, clinical, and traditional applications. International Journal of Molecular Sciences, 23(23), 15054. https://doi.org/10.3390/ijms232315054

Rababah, T. M., Banat, F., Rababah, A., Ereifej, K., & Yang, W. (2010). Optimization of extraction conditions of total phenolics, antioxidant activities, and anthocyanin of oregano, thyme, terebinth, and pomegranate. Journal of Food Science, 75(7), C626-C632. https://doi.org/10.1111/j.1750-3841.2010.01756.x

Rampart, M., Beetens, J. R., Bult, H., Herman, A. G., Parnham, M. J., & Winkelmann, J. (1986). Complement-dependent stimulation of prostacyclin biosynthesis: inhibition by rosmarinic acid. Biochemical Pharmacology, 35(8), 1397-1400. https://doi.org/10.1016/0006-2952(86)90289-3

Santos, M. C. P., & Gonçalves, É. C. B. A. (2016). Effect of different extracting solvents on antioxidant activity and phenolic compounds of a fruit and vegetable residue flour. Scientia Agropecuaria, 7(1), 7-14. https://doi.org/10.17268/sci.agropecu.2016.01.01

Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18(B), 757-781. https://doi.org/10.1016/j.jff.2015.01.047

Shanks, J. V., & Morgan, J. (1999). Plant ‘hairy root’culture. Current Opinion in Biotechnology, 10(2), 151-155. https://doi.org/10.1016/S0958-1669(99)80026-3

Shin, S., & Kang, C.-A. (2003). Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Letters in Applied Microbiology, 36(2), 111-115. https://doi.org/10.1046/j.1472-765x.2003.01271.x

Shtereva, L., Vassilevska-Ivanova, R., Stancheva, I., Geneva, M., & Stoyanova, E. (2016). Evaluation of antioxidant activity of Agastache foeniculum and Agastache rugosa extracts. Comptes rendus de l’Acade'mie Bulgare Des Sciences, 69(3), 295-302.

Solecka, D. (1997). Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiologiae Plantarum, 19, 257-268. https://doi.org/10.1007/s11738-997-0001-1

Tvrda, E., Straka, P., Galbavy, D., & Ivanic, P. (2019). Epicatechin provides antioxidant protection to bovine spermatozoa subjected to induced oxidative stress. Molecules, 24(18), 3226. https://doi.org/10.3390/molecules24183226

Wink, M. (2008). Plant secondary metabolism: diversity, function and its evolution. Natural Product Communications, 3(8), 1205-1216. https://doi.org/10.1177/1934578X0800300801

Yeo, H. J., Kwon, M. J., Han, S. Y., Jeong, J. C., Kim, C. Y., Park, S. U., & Park, C. H. (2023). Effects of carbohydrates on rosmarinic acid production and in vitro antimicrobial activities in hairy root cultures of Agastache rugosa. Plants, 12(4), 797. https://doi.org/10.3390/plants12040797

Published

26-04-2024

How to Cite

Nguyen, B. V., Lim, J., Kim, K., Seo, H., Sathasivam, R., Park, J. S., Kim, J. K., & Park, S. U. (2024). Optimizing suitable solvent for phenylpropanoid extraction and antioxidant activities in Agastache rugosa hairy roots. Journal of Phytology, 16, 87–93. https://doi.org/10.25081/jp.2024.v16.8894

Issue

Section

Articles