Sourcing antimicrobial agents from Globimetula braunii: An in silico molecular docking and dynamic approach

Authors

  • Ayodeji O. Oriola Department of Chemical and Physical Sciences, Walter University, Mthatha, South Africa
  • Pallab Kar Department of Chemical and Physical Sciences, Walter University, Mthatha, South Africa
  • Adebola O. Oyedeji Department of Chemical and Physical Sciences, Walter University, Mthatha, South Africa, African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha, South Africa

DOI:

https://doi.org/10.25081/jp.2024.v16.8850

Keywords:

Globimetula braunii, Molecular docking, Molecular dynamics, Antimicrobials, 13,27-cyycloursan-3-one

Abstract

The continued emergence of multi-drug resistance pathogens has been a major setback to lifting the burden of infectious diseases, especially bacterial illnesses. Natural- and/or nature-inspired compounds have so far become a therapeutic backbone on which many novel antibacterial agents are optimized. It is against this backdrop that we used an in silico molecular interaction-based approach to screen five previously identified compounds from Globimetula braunii, for lead inhibitors against bacterial illnesses. The compounds were chromatographed from the leaf ethyl acetate fraction and were characterized by spectroscopic means as 13,27-cycloursane (1), 13,27-cycloursan-3-one (2), methyl-3,5-dihydroxy-4-methoxybenzoate (3), 3-methyl-4-hydroxybenzoate (4), and 2-methoxyphenol (5). Upon their molecular docking at the active pocket of the Staphylococcus aureus gyrase B and the Escherichia coli DNA gyrase, 2 showed the highest binding affinities, with energy scores of -10 and -9.6 Kcal/mol. These were better than the standard antibiotics, Ampicillin (-7.5 and -8.0 Kcal/mol), and Ciprofloxacin (-6.9, -8.4 Kcal/mol). Further evaluation of the most promising compound 2 by molecular dynamics simulation showed the mean RMSD values of the 13,27-cycloursan-3-one - E. coli DNA gyrase protein complexes (complex 1) and 13,27-cycloursan-3-one - S. aureus gyrase B protein (complex 2) to be 0.7 and 0.9 Ǻ respectively, attaining stability at 102 and 108 ns. In contrast, complexes 1 and 2’s RMSF analysis revealed the fewest fluctuations and was generally stable over the course of the 120 ns. In conclusion, 13,27-cycloursan-3-one is unquestionably the most promising inhibitory candidate against the bacterial growth protein DNA gyrase, hence, it can be considered as a druggable substance against bacterial disease.

Downloads

Download data is not yet available.

References

Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19-25. https://doi.org/10.1016/j.softx.2015.06.001

Baker, C., Pradhan, A., Pakstis, L., Pochan, D. J., & Shah, S. I. (2005). Synthesis and antibacterial properties of silver nanoparticles. Journal of Nanoscience & Nanotechnology, 5(2), 244-249. https://doi.org/10.1166/jnn.2005.034

Beveridge, T. J., & Fyfe, W. S. (1985). Metal fixation by bacterial cell walls. Canadian Journal of Earth Sciences, 22(12), 1893-1898. https://doi.org/10.1139/e85-204

Broeck, A. V., Lotz, C., Ortiz, J., & Lamour, V. (2019). Cryo-EM structure of the complete E. coli DNA gyrase nucleoprotein complex. Nature Communications, 10(1), 4935. https://doi.org/10.1038/s41467-019-12914-y

Eakin, A. E., Green, O., Hales, N., Walkup, G. K., Bist, S., Singh, A., Mullen, G., Bryant, J., Embrey, K., Gao, N., Breeze, A., Timms, D., Andrews, B., Uria-Nickelsen, M., Demeritt, J., Loch III, J. T., Hull, K., Blodgett, A., Illingworth, R. N., ... Sherer, B. (2012). Pyrrolamide DNA gyrase inhibitors: fragment-based nuclear magnetic resonance screening to identify antibacterial agents. Antimicrobial Agents & Chemotherapy, 56(3), 1240-1246. https://doi.org/10.1128/AAC.05485-11

Elfiky, A. A., & Azzam, E. B. (2020). Novel guanosine derivatives against MERS CoV polymerase: An in silico perspective. Journal of Biomolecular Structure & Dynamics, 39(8), 2923-2931. https://doi.org/10.1080/07391102.2020.1758789

Enayatkhani, M., Hasaniazad, M., Faezi, S., Guklani, H., Davoodian, P., Ahmadi, N., Einakian, M. A., Karmostaji, A., & Ahmadi, K. (2020). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. Journal of Biomolecular Structure and Dynamics, 39(8), 2857-2872. https://doi.org/10.1080/07391102.2020.1756411

Flores-López, N. S., Cortez-Valadez, M., Moreno-Ibarra, G. M., Larios-Rodríguez, E., Torres-Flores, E. I., Delgado-Beleño, Y., Martinez-Nuñez, C. E., Ramírez-Rodríguez, L. P., Arizpe-Chávez, H., Castro-Rosas, J., Ramirez-Bon, R., & Flores-Acosta, M. (2016). Silver nanoparticles and silver ions stabilized in NaCl nanocrystals. Physica E: Low-dimensional Systems Nanostructures, 84, 482-488. https://doi.org/10.1016/j.physe.2016.07.012

Halliwell, B., & Gutteridge, J. M. C. (1981). Formation of a thiobarbituric acid reactive substance from deoxyribose in the presence of iron salts. FEBS Letter, 128(2), 347-352. https://doi.org/10.1016/0014-5793(81)80114-7

Jiang, X., Kumar, K., Hu, X., Wallqvist, A., & Reifman, J. (2008). DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0. Chemistry Central Journal, 2, 18. https://doi.org/10.1186/1752-153X-2-18

Kar, P., Kumar, V., Vellingiri, B., Sen, A., Jaishee, N., Anandraj, A., Malhotra, H., Bhattacharya, S., Mukhopadhyay, S., Kinoshita, M., Govindasamy, V., Roy, A., Naidoo, D., & Subramaniam, M. D. (2022a). Anisotine and amarogentin as promising inhibitory candidates against SARS-CoV-2 proteins: a computational investigation. Journal of Biomolecular Structure and Dynamics, 40(10), 4532-4542. https://doi.org/10.1080/07391102.2020.1860133

Kar, P., Saleh‐E‐In, M. M., Jaishee, N., Anandraj, A., Kormuth, E., Vellingiri, B., Angione, C., Rahman, P. K. S. M., Pillay, S., Sen A., Naidoo, D., Roy, A., & Choi, Y. E. (2022b). Computational profiling of natural compounds as promising inhibitors against the spike proteins of SARS‐CoV‐2 wild‐type and the variants of concern, viral cell‐entry process, and cytokine storm in COVID‐19. Journal of Cellular Biochemistry, 123(5), 964-986. https://doi.org/10.1002/jcb.30243

Kar, P., Sharma, N. R., Singh, B., Sen, A., & Roy, A. (2021). Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. Journal of Biomolecular Structure and Dynamics, 39(13), 4774-4785. https://doi.org/10.1080/07391102.2020.1780947

Lu, J., Patel, S., Sharma, N., Soisson, S. M., Kishii, R., Takei, M., Fukuda, Y., Lumb, K. J., & Singh, S. B. (2014). Structures of kibdelomycin bound to Staphylococcus aureus GyrB and ParE showed a novel U-shaped binding mode. ACS Chemical Biology, 9(9), 2023-2031. https://doi.org/10.1021/cb5001197

Muhammad, K. J., Jamil, S., Basar, N., Arriffin, N. M., Idris, M. T., Jibril, S., & Akanji, F. T. (2022). Antioxidant, antimicrobial and antityrosinase activities of phytochemicals from the leaves of Globimetula braunii (Engler) Van Tiegh (Loranthaceae). Bulletin of the Chemical Society of Ethiopia, 36(2), 387-397. https://doi.org/10.4314/bcse.v36i2.12

Muhammad, K. J., Jamil, S., Basar, N., Sarker, S. D., & Mohammed, M. G. (2020). Globrauneine A–F: six new triterpenoid esters from the leaves of Globimetula braunii. Natural Product Research, 34(19), 2746-2753. https://doi.org/10.1080/14786419.2019.1586693

Naidoo, D., Roy, A., Kar, P., Mutanda, T., & Anandraj, A. (2020). Cyanobacterial metabolites as promising drug leads against the Mpro and PLpro of SARS-CoV-2: An in silico analysis. Journal of Biomolecular Structure & Dynamics, 39(16), 6218-6230. https://doi.org/10.1080/07391102.2020.1794972

Oriola, A. O., Aladesanmi, A. J., Idowu, T. O., Akinwumi, F. O., Obuotor, E. M., Idowu, T., & Oyedeji, A. O. (2021). Ursane-type triterpenes, phenolics and phenolic derivatives from Globimetula braunii leaf. Molecules, 26(21), 6528. https://doi.org/10.3390/molecules26216528

Paterson, D. L., & van Duin, D., (2017). China's antibiotic resistance problems. Lancet Infectious Diseases, 17(4), 351-352. https://doi.org/10.1016/s1473-3099(17)30053-1

Reece, R. J., & Maxwell, A. (1991). DNA gyrase: structure and function. Critical Reviews in Biochemistry and Molecular Biology, 26(3-4), 335-375. https://doi.org/10.3109/10409239109114072

Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443-W447. https://doi.org/10.1093/nar/gkv315

Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 60(8), 1355-1363. https://doi.org/10.1107/s0907444904011679

Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334

Umesh, Kundu, D., Selvaraj, C., Singh, S. K., & Dubey, V. K. (2020). Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure and Dynamics, 39(9), 3428-3434. https://doi.org/10.1080/07391102.2020.1763202

Published

09-09-2024

How to Cite

Oriola, A. O., Kar, P., & Oyedeji, A. O. (2024). Sourcing antimicrobial agents from Globimetula braunii: An in silico molecular docking and dynamic approach. Journal of Phytology, 16, 163–168. https://doi.org/10.25081/jp.2024.v16.8850

Issue

Section

Articles