Influence of medium and gelling agents concentration on in vitro rooting of Polygonum tinctorium

Authors

  • Minsol Choi Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
  • Haeng-Hoon Kim Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Republic of Korea
  • Hyewon Seo Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
  • Ramaraj Sathasivam Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
  • Jae Kwang Kim Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
  • Sang Un Park Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea, Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Republic of Korea

DOI:

https://doi.org/10.25081/jp.2024.v16.8793

Keywords:

Gelling agents, Root regeneration, Growth media, In vitro rooting ability

Abstract

Polygonum tinctorium has long been employed in the medical and dye industries in many nations, particularly in Korea and Japan, for traditional fabric staining as a source of blue color. The plant tissue culture method has proven to be a rapid and sustainable approach for the regeneration of various plant species, particularly those with medicinal or ornamental value. In this study, we explored the in vitro root regeneration and growth of P. tinctorium in response to different growth media and gelling agents. Among the tested media, Schenk and Hildebrandt medium (SH medium) demonstrated superior performance, resulting in the highest number and length of roots per explant. SH media produced about 53 and 18% higher root per explant and a 40% and 14% increase in root length compared to B5 and MS media, respectively. Half strength of SH medium proved to be the optimal condition for both root number (7.46 roots per explant) and root length (3.81 mm). Among the gelling agents, 2 g/L of Gelrite medium was most effective in promoting the highest and tallest roots. These findings have the potential to enhance rooting abilities in various crops, particularly in the case of medicinal and ornamental plants, and may offer valuable insights for future industrial-scale root production of P. tinctorium.

Downloads

Download data is not yet available.

References

Arthur, G. D., Stirk, W. A., & Van Staden, J. (2006). Effects of autoclaving and charcoal on root promoting substances present in water extracts made from gelling agents. Bioresource Technology, 97(15), 1942-1950. https://doi.org/10.1016/j.biortech.2005.08.016

Benková, E., & Bielach, A. (2010). Lateral root organogenesis-from cell to organ. Current Opinion in Plant Biology, 13(6), 677-683. https://doi.org/10.1016/j.pbi.2010.09.006

Campeol, E., Angelini, L. G., Tozzi, S., & Bertolacci, M. (2006). Seasonal variation of indigo precursors in Isatis tinctoria L. and Polygonum tinctorium A. as affected by water deficit. Environmental and Experimental Botany, 58(1-3), 223-233. https://doi.org/10.1016/j.envexpbot.2005.09.006

Chung, I. M., Kim, H. B., Sung, G. B., Kim, Y. D., & Hong, I. P. (2005). Pure dyestuff extract from Polygonum tinctoria. Journal of Sericultural and Entomological Science, 47(2), 88-92.

Cooksey, C. J. (2007). Indigo: an annotated bibliography. Biotechnic and Histochemistry, 82(2), 105-125. https://doi.org/10.1080/00958970701267235

Gamborg, O. L., Murashige, T., Thorpe, T. A., & Vasil, I. K. (1976). Plant tissue culture media. In vitro, 12(7), 473-478. https://doi.org/10.1007/bf02796489

Han, M. S., Noh, S. A., Kwak M. C., & Moon, H. K. (2014). Micropropagation of a rare plant species, Astragalus membranaceus Bunge var. alpinus N. Journal of Plant Biotechnology, 41(2), 100-106. http://doi.org/10.5010/JPB.2014.41.2.100

Harras, N., & Lamarti, A. (2014). In vitro germination and plantlet establishment of wild chamomile of Morocco Cladanthus mixtus (L.) Oberpr. and Vogt. American Journal of Plant Sciences, 5(18), 2623-2632. http://doi.org/10.4236/ajps.2014.518277

Hirota, K., Hanaoka, Y., Nodasaka, Y., & Yumoto, I. (2014). Gracilibacillus alcaliphilus sp. nov., a facultative alkaliphile isolated from indigo fermentation liquor for dyeing. International Journal of Systematic and Evolutionary Microbiology, 64(9), 3174-3180. https://doi.org/10.1099/ijs.0.060871-0

Hirota, K., Okamoto, T., Matsuyama, H., & Yumoto, I. (2016). Polygonibacillus indicireducens gen. nov., sp. nov., an indigo-reducing and obligate alkaliphile isolated from indigo fermentation liquor for dyeing. International Journal of Systematic and Evolutionary Microbiology, 66(11), 4650-4656. https://doi.org/10.1099/ijsem.0.001405

Ismail, R. M., Elazab, H. E. M., Hussein G. M. H., & Metry, E. A. (2011). In vitro root induction of faba bean (Vicia faba L.). GM Crops, 2(3), 176-181. https://doi.org/10.4161/gmcr.2.3.18003

Khan, P. S. S. V., Hausman, J. F., & Rao, K. R. (1999). Effect of agar, MS medium strength, sucrose and polyamines on in vitro rooting of Syzygium alternifolium. Biologia Plantarum, 42, 333-340. https://doi.org/10.1023/A:1002400915965

Kukuła-Koch, W., Głowniak, K., Koch, W., & Kwiatkowski, S. (2013). Optimization of temperature affected extraction of indigo dye in the leaf extracts of Polygonum tinctorium A. cultivated in Poland--preliminary studies. Acta Poloniae Pharmaceutica, 70(3), 579-583.

Millán-Orozco, L., Corredoira, E., & del Carmen San José, M. (2011). In vitro rhizogenesis: Histoanatomy of Cedrelaodorata (Meliaceae) microcuttings. Revista De Biologia Tropical, 59(1), 447-453. https://doi.org/10.15517/rbt.v59i1.3211

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Osterc, G., & Štampar, F. (2011). Differences in endo/exogenous auxin profile in cuttings of different physiological ages. Journal of Plant Physiology, 168(17), 2088-2092. https://doi.org/10.1016/j.jplph.2011.06.016

Ozdemir, B. S., & Budak, H. (2018). Application of tissue culture and transformation techniques in model species Brachypodium distachyon. In G. Sablok, H. Budak & P. Ralph (Eds.), Brachypodium Genomics: Methods in Molecular Biology (Vol. 1667, pp. 289-310) New York: Humana Press. https://doi.org/10.1007/978-1-4939-7278-4_18

Park, S.U., Kim Y. K., & Lee, S.Y. (2009). Improved in vitro plant regeneration and micro- propagation of Rehmannia glutinosa L. Journal of Medicinal Plants Research, 3(1), 031-034.

Raina, R. J., & Babbar, S. B. (2011). Evaluation of blends of alternative gelling agents with agar and development of Xanthagar, a gelling mix, suitable for plant tissue culture media. Asian Journal of Biotechnology, 3(2), 153-164. https://doi.org/10.3923/ajbkr.2011.153.164

Romberger, J. A., & Tabor, C. A. (1971). The Picea abies shoot apical meristem in culture. I. agar and autoclaving effects. American Journal of Botany, 58(2), 131-140. https://doi.org/10.1002/j.1537-2197.1971.tb09956.x

Saito, A., & Suzuki, M. (1999). Plant regeneration from meristem-derived callus protoplasts of apple (Malus3domestica cv. 'Fuji'). Plant Cell Reports, 18, 549-553. https://doi.org/10.1007/s002990050620

Schenk, R. U., & Hildebrandt, A. C. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany, 50(1), 199-204. https://doi.org/10.1139/b72-026

Shasmita, Rai, M. K., & Naik, S. K. (2017). Exploring plant tissue culture in Withania somnifera (L.) Dunal: in vitro propagation and secondary metabolite production. Critical Reviews in Biotechnology, 38(6), 836-850. https://doi.org/10.1080/07388551.2017.1416453

Shinde, S., Sebastian, J. K., Jain, J. R., Hanamanthagouda, M. S., & Murthy, H. N. (2016). Efficient in vitro propagation of Artemisia nilagirica var. nilagirica (Indian wormwood) and assessment of genetic fidelity of micropropagated plants. Physiology and Molecular Biology of Plants, 22, 595-603. https://doi.org/10.1007/s12298-016-0379-6

Shrivastava, N., & Rajani, M. (1999). Multiple shoot regeneration and tissue culture studies on Bacopa monnieri (L.) Pennell. Plant Cell Reports, 18, 919-923. https://doi.org/10.1007/s002990050684

Thomas, T. D. (2008). The role of activated charcoal in plant tissue culture. Biotechnology Advances, 26(6), 618-631. https://doi.org/10.1016/j.biotechadv.2008.08.003

Thwe, A. A., Chae, S. C., Chung S.-O., & Park, S. U. (2013). Influence of medium and auxin concentration on in vitro rooting of Rehmannia glutinosa L. Life Science Journal, 10(3), 685-688.

Thwe, A. A., Kim, H. H., Kim, H. H, & Park, S. U. (2015). Enhancement of in vitro rooting by gelling agents and activated charcoal in Rehmannia glutinosa L. OnLine Journal of Biological Sciences, 15(2), 49-52. https://doi.org/10.3844/ojbsci.2015.49.52

Published

07-02-2024

How to Cite

Choi, M., Kim, H.-H., Seo, H., Sathasivam, R., Kim, J. K., & Park, S. U. (2024). Influence of medium and gelling agents concentration on in vitro rooting of Polygonum tinctorium. Journal of Phytology, 16, 8–12. https://doi.org/10.25081/jp.2024.v16.8793

Issue

Section

Articles