Correlation of total phenolic and flavonoid contents on the antioxidant activity of Psychotria gitingensis and Psychotria pilosella

Authors

  • Mikaela Yakira M. Aureada College of Science, University of Santo Tomas, España, Manila 1015, Philippines
  • Jo Dexter R. Duran College of Science, University of Santo Tomas, España, Manila 1015, Philippines
  • Stephanie Rafaelle A. Falcatan College of Science, University of Santo Tomas, España, Manila 1015, Philippines
  • Kirsten Marla T. Pornillos College of Science, University of Santo Tomas, España, Manila 1015, Philippines
  • Mary Angela G. Villanueva College of Science, University of Santo Tomas, España, Manila 1015, Philippines
  • Jorge Anton D. Ordas College of Science, University of Santo Tomas, España, Manila 1015, Philippines
  • Mario A. Tan College of Science, University of Santo Tomas, España, Manila 1015, Philippines, Research Center for the Natural and Applied Sciences, University of Santo Tomas, España, Manila 1015, Philippines

DOI:

https://doi.org/10.25081/jp.2023.v15.8545

Keywords:

Antioxidant, DPPH, ABTS, FRAP, Psychotria, Rubiaceae

Abstract

The genus Psychotria (Rubiaceae) possesses various biological properties, ranging from phytochemical and pharmacological properties of their chemical constituents to traditional medical applications. Most Psychotria species remain unstudied despite high diversity and endemism in the Philippines. Hence, this study investigates the total phenolic and flavonoid contents of Psychotria gitingensis and Psychotria pilosella methanolic crude extracts, evaluates their antioxidant properties, and assesses their antibacterial properties. Results revealed that P. gitingensis fruit extract exhibited the highest phenolic content (254.45 ± 6.63 mg GAE/g extract) and flavonoid content (9.85 ± 0.49 mg QE/g). In addition, it also displayed the highest antioxidant activity (0.993 ± 0.041 mg/mg) in the ABTS assay. P. pilosella leaf extract exhibited the highest antioxidant activity in DPPH (70.53% ± 1.50), and P. gitingensis leaf extract showed the highest iron-reducing antioxidant power (86.06% ± 0.73) in FRAP. Paper disk diffusion tests, however, did not exhibit activity against selected nosocomial pathogens. The results of this study contribute to expanding the field of knowledge on alternative treatments and paving the way for the development of new medicinal products.

Downloads

Download data is not yet available.

References

Abebe, E., & Mekonnen, N. (2016). In Vitro antibacterial activity of Rumex nervosus, Plantago lanceolata, Solanum incanum and Lepidium sativum against selected bacterial pathogens of human and animals. Ethiopian Veterinary Journal, 20(2), 119-131. https://doi.org/10.4314/evj.v20i2.9

Arvouet-Grand, A., Vennat, B., Pourrat, A., & Legret, P. (1994). Standardization of propolis extract and identification of principal constituents. Journal de Pharmacie de Belgique, 49(6), 462-468.

Babu, D., Kushwaha, K., Sehgal, S., & Juneja, V. K. (2017). Antimicrobials of Plant Origin. In V. K. Juneja, H. P. Dwivedi & J. N. Sofos (Eds.), Microbial Control and Food Preservation: Food Microbiology and Food Safety (pp. 85-100) New York: Springer. https://doi.org/10.1007/978-1-4939-7556-3_5

Batuyong, M. A. R., Calaramo, M. A., & Alejandro, G. J. D. (2020). Diversity of Rubiaceae in Ilocos Norte, Northwestern Luzon, Philippines: A preliminary checklist, their distribution, and conservation status. Philippine Journal of Science, 150(S1), 487-502. https://doi.org/10.56899/150.S1.37

Biag, R. D., & Alejandro, G. J. D. (2021). Rubiaceae flora of Northern Sierra Madre Natural Park, Isabela, Luzon, Philippines: Species richness, distribution and conservation Status. Philippine Journal of Science, 150(3), 907-921. https://doi.org/10.56899/150.03.26

Castro, S. G., Cid, J. E., Ibañez, W. A., Alejandro, G. J. D., & Tan, M. A. (2016). GC–MS metabolite profiling of the hexane extract and antimicrobial characterization of the Philippine endemic Rubiaceae species Uncaria cordata var. circa, Psychotria luzoniensis, and Psydrax puberula. Acta Manilana, 64, 9-16.

Clarke, G., Ting, K. N., Wiart, C., & Fry, J. (2013). High correlation of 2, 2-diphenyl-a-picrylhydrazyl (DPPH), ferric reducing activity potential, and total phenolic contents redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian forest. Antioxidants, 2(1), 1-10. https://doi.org/10.3390/antiox2010001

Cordero, C. S., Ligsay, A., & Alejandro, G. J. D. (2020). Ethnobotanical documentation of medicinal plants used by the Ati Tribe in Malay, Aklan, Philippines. Journal of Complementary Medicine Research, 11(1), 170-198. https://doi.org/10.5455/jcmr.2020.11.01.20

Gajula, D., Verghes, M., Boateng, J., Walker, L. T., Shackelford, L., Mentreddy, S. R., & Cedric, S. (2009). Determination of total phenolics, flavonoids and antioxidant and chemopreventive potential of basil (Ocimum basilicum L. and Ocimum tenuiflorum L.). International Journal of Cancer Research, 5(4), 130-143. https://doi.org/10.3923/ijcr.2009.130.143

Gonzales, M., Villena, G. K., & Kitazono, A. A. (2021). Evaluation of the antioxidant activities of aqueous extracts from seven wild plants from the Andes using an in vivo yeast assay. Results in Chemistry, 3, 100098. https://doi.org/10.1016/j.rechem.2021.100098

Gutierrez, R. M., Baculi, R., Pastor, N., Puma-at, T., & Balangcod, T. (2013). Antibacterial potential of some medicinal plants of the Cordillera Region, Philippines. Indian Journal of Traditional Knowledge, 12(4), 630-637.

Indradi, B., Fidrianny, I., & Wirasutisna, K. R. (2017). DPPH Scavenging activities and phytochemical content of four asteraceae plants. International Journal of Pharmacognosy and Phytochemical Research, 9(6), 755-769. https://doi.org/10.25258/phyto.v9i6.8173

Moreira, D. C. (2019). ABTS decolorization assay – in vitro antioxidant capacity. protocols.io. https://doi.org/10.17504/protocols.io.42xgyfn

Muflihah, Y. M., Gollavelli, G., & Ling, Y.-C. (2021). Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 indonesian indigenous herbs. Antioxidants, 10(10), 1530. https://doi.org/10.3390/antiox10101530

National Institute of Health. (2017). Antioxidants and cancer prevention. National Cancer Institute. Retrived from https://www.cancer.gov/about-cancer/causes-prevention/risk/diet/antioxidants-fact-sheet

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41

Patel, V. B., & Preedy, V. R. (2021). Cancer: oxidative stress and dietary antioxidants. (2nd ed.). Massachusetts: Academic Press.

Pelser, P. B., Barcelona, J. F., & Nickrent, D. (2011). Co’s digital flora of the Philippines. Retrieved from https://www.philippineplants.org/

Petrovska, B. B. (2012). Historical review of medicinal plants' usage. Pharmacognosy Reviews, 6(11), 1-5. https://doi.org/10.4103/0973-7847.95849

POWO. (2023) Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrived from http://www.plantsoftheworldonline.org

Praptiwi, P., Sulistiarini, D., Qodrie, E. N. P., & Sahroni, D. (2021). Antibacterial activity, antioxidant potential, total phenolic and flavonoids of three plant species of Rubiaceae from Banggai Island, Indonesia. Biodiversitas Journal of Biological Diversity, 22(5), 2773-2778. https://doi.org/10.13057/biodiv/d220540

Ramil, R. J. D., Ramil, M. D. I., Konno, T., Murata, T., Kobayashi, K., Buyankhishig, B., Agrupis, S. C., & Sasaki, K. (2021). A new hexenoic acid glycoside with cytotoxic activity from the leaves of Psychotria luzoniensis. Natural Product Research, 35(23), 5036-5041. https://doi.org/10.1080/14786419.2020.1765345

Rodgers, G. M., & Gilreath, J. A. (2019). The role of intravenous iron in the treatment of anemia associated with cancer and chemotherapy. Acta Haematologica, 142(1), 13-20. https://doi.org/10.1159/000496967

Tan, M. A., Eusebio, J. A., & Alejandro, G. J. D. (2012). Chemotaxonomic implications of the absence of alkaloids in Psychotria gitingensis. Biochemical Systematics and Ecology, 45, 20-22. https://doi.org/10.1016/j.bse.2012.07.016

Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A.-H., & Jaremko, M. (2020). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22), 5243. https://doi.org/10.3390/molecules25225243

Wintola, O. A., & Afolayan, A. J. (2015). The antibacterial, phytochemicals and antioxidants evaluation of the root extracts of Hydnora africanaThunb. used as antidysenteric in Eastern Cape Province, South Africa. BMC Complementary and Alternative Medicine, 15, 307. https://doi.org/10.1186/s12906-015-0835-9

Yu, G. F. B., Cabrera, R. C. R., Bueno, P. R. P., & Sia, I. C. (2020). The in vitro antioxidant activity and phytochemicals of locally consumed plant foods from Quezon Province, Philippines. Acta Medica Philippina, 54(2), 151-160. https://doi.org/10.47895/amp.v54i2.1531

Published

11-09-2023

How to Cite

Aureada, M. Y. M., Duran, J. D. R., Falcatan, S. R. A., Pornillos, K. M. T., Villanueva, M. A. G., Ordas, J. A. D., & Tan, M. A. (2023). Correlation of total phenolic and flavonoid contents on the antioxidant activity of Psychotria gitingensis and Psychotria pilosella. Journal of Phytology, 15, 110–115. https://doi.org/10.25081/jp.2023.v15.8545

Issue

Section

Articles