Enhancement of shoot organogenesis in Polygonum tinctorium by sucrose and gelling agents

Authors

  • Sang Un Park Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
  • Ki Jung Kil Department of Oriental Medicine and Pharmaceutical Science, Joongbu University, Geumsan-gun, Chungcheongnam-do, 32713, Republic of Korea

DOI:

https://doi.org/10.25081/jp.2022.v14.8055

Keywords:

Gelling agent, micropropagation, Polygonum tinctorium, Sucrose

Abstract

Indigo (Polygonum tinctorium), though it is a medicinal and dye crop, can also be grown in temperate areas, especially because it is commonly disseminated in Japan. To date, much research has been considered under investigation, especially for the regeneration of the indigo plant. Here in this study, we investigated the response of sucroses and gelling agents on the shoot organogenesis of the indigo plant. Micropropagation in terms of shoot regeneration and its growth was highly responded to sucrose and gelling agents. While culturing of internode explants on initial shoot regeneration media supplemented with sucrose and gelling agents of phytagar and gelrite significantly upgraded the regeneration efficiency as well as shoot growth. The regeneration capacity of the shoot was augmented with increased levels of sucrose up to 40 g L-1 and then started to decrease, whereas the increasing pattern continued even at the highest concentration (50 g L-1). The highest shoot regeneration (6.0 ± 0.5) was achieved by the treatment of 40 g L-1 giving 7.5 times higher shoot regeneration compared to the control. The increasing pattern for shoot length was more pronounced than that of shoot regeneration. The shoot length ranged from 10.2 mm to 23.5 mm within the sucrose treatments. In this study, the highest shoot length (23.5± 0.21) was observed by the treatment of 50 g L-1 exhibiting 2.3 times higher shoot length compared to the control. Gelling agent gelrite performed better than phytagar for both regeneration and shoot length growth. The shoot regeneration among the phytagar treatments ranged from 3.8 to 6.0 shoots/explant whereas the shoot regeneration ranged from 6.6 to 7.2 among the gelrite treatments. The highest shoots/explant (7.2) and the longest shoot length (22.4 mm) were observed due to the treatment of gelrite 3. The lowest shoot regeneration and shoot length were denoted when phytagar 9 was applied. It is proposed from our study that sucrose and gelling agent especially gelrite 3 could be applied in shoot organogenesis and plant transformation of any plant species, especially for P. tinctorium.

Downloads

Download data is not yet available.

References

Buah, J. N., Kawamitsu, Y., Sato, S., & Murayama, S. (1999). Effects of different types and concentrations of gelling agents on the physical and chemical properties of media and the growth of banana (Musa spp.) in vitro. Plant Production Science, 2(2), 138-145. https://doi.org/10.1626/pps.2.138

Campeol, E., Angelini, L. G., Tozzi, S., & Bertolacci, M. (2006). Seasonal variation of indigo precursors in Isatis tinctoria L. and Polygonum tinctorium Ait. as affected by water deficit. Environmental and Experimental Botany, 58(1-3), 223-233. https://doi.org/10.1016/j.envexpbot.2005.09.006

Chung, I. M., Kim, H. B., Sung, G. B., Kim, Y. D., & Hong, I. P. (2005). Pure dyestuff extract from Polygonum tinctoria. Journal of Sericultural and Entomological Science, 47(2), 88-92.

Cooksey, C. J. (2007). Indigo: an annotated bibliography. Biotechnic and Histochemistry, 82(2), 105-125. https://doi.org/10.1080/00958970701267235

Han, N. R., Park, J. Y., Jang, J. B., Jeong, H. J., & Kim, H. M. (2014). A natural dye, Niram improves atopic dermatitis through down-regulation of TSLP. Environmental Toxicology Pharmacology, 38(3), 982-990. https://doi.org/10.1016/j.etap.2014.10.011

Hirota, K., Hanaoka, Y., Nodasaka, Y., & Yumoto, I. (2014). Gracilibacillus alcaliphilus sp. nov., a facultative alkaliphile isolated from indigo fermentation liquor for dyeing. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_9), 3174-3180. https://doi.org/10.1099/ijs.0.060871-0

Hirota, K., Okamoto, T., Matsuyama, H., & Yumoto, I. (2016). Polygonibacillus indicireducens gen. nov., sp. nov., an indigo-reducing and obligate alkaliphile isolated from indigo fermentation liquor for dyeing. International Journal of Systematic and Evolutionary Microbiology, 66(11), 4650-4656. https://doi.org/10.1099/ijsem.0.001405

Honda, G., Tosirisuk, V., & Tabata, M. (1980). Isolation of an antidermatophytic, tryptanthrin, from indigo plants, Polygonum tinctorium and Isatis tinctoria. Planta Medica, 38(3), 275-276. https://doi.org/10.1055/s-2008-1074877

Honda, G., & Tabata, M. (1979). Isolation of antifungal principle tryptathrin, from Strobilanthes cusia O. Kuntze. Planta Medica, 36(5), 85-86. https://doi.org/10.1055/s-0028-1097245

Hu, Z., Tu, Y., Xia, Y., Cheng, P., Sun, W., Shi, Y., Guo, L., He, H., Xiong, C., Chen, S., & Zhang X. (2015). Rapid identification and verification of indirubin-containing medicinal plants. Evidence-Based Complementary and Alternative Medicine, 2015, 484670. https://doi.org/10.1155/2015/484670

Jacq, B., Tétu, T., Sangwan, R. S., Laat, A. D., & Sangwan-Norreel, B. S. (1992). Plant regeneration from sugarbeet (Beta vulgaris L.) hypocotyls cultured in vitro and flowcytometric nuclear DNA analysis of regenerants. Plant Cell Reports, 11, 329-333. https://doi.org/10.1007/bf00233359

Jain-Raina, R., & Babbar, S. B. (2011). Evaluation of blends of alternative gelling agents with agar and development of xanthagar, a gelling mix, suitable for plant tissue culture media. Asian Journal of Biotechnology, 3(2), 153-164. https://doi.org/10.3923/ajbkr.2011.153.164

Jang, H. G., Heo, B. G., Park, Y. S., Namiesnik, J., Barasch, D., Katrich, E., Vearasilp, K., Trakhtenberg, S., & Gorinstein S. (2012). Chemical composition, antioxidant and anticancer effects of the seeds and leaves of indigo (Polygonum tinctorium Ait.) plant. Applied Biochemistry and Biotechnology, 167(7), 1986-2004. https://doi.org/10.1007/s12010-012-9723-7

Kaçar, Y. A., Biçen, B., Varol, I., Mendi, Y. Y., Serçe, S., & Cetiner, S. (2010). Gelling agents and culture vessels affect in vitro multiplication of banana plantlets. Genetics and Molecular Research, 9(1), 416-424. https://doi.org/10.4238/vol9-1gmr744

Kataoka, M., Hirata, K., Kunikata, T., Ushio, S., Iwaki, K., Ohashi, K., Ikeda, M., & Kurimoto, M. (2001). Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori-infected Mongolian gerbils. Journal of Gastroenterology, 36, 5-9. https://doi.org/10.1007/s005350170147

Kim, J. K., Baskar, T. B., & Park, S. U. (2016). Silver nitrate and putrescine enhance in vitro shoot organogenesis in Polygonum tinctorium. Biosciences Biotechnology Research Asia, 13(1), 53-58. https://doi.org/10.13005/bbra/2002

Kukuła-Koch, W., Głowniak, K., Koch, W., & Kwiatkowski, S. (2013). Optimization of temperature affected extraction of indigo dye in the leaf extracts of Polygonum tinctorium Ait. cultivated in Poland- -preliminary studies. Acta Poloniae Pharmaceutica, 70(3), 579-583.

Kumagai, T., Aratsu, Y., Sugawara, R., Sasaki, T., Miyairi, S., & Nagata, K. (2016). Indirubin, a component of Ban-Lan-Gen, activates CYP3A4 gene transcription through the human pregnane X receptor. Drug Metabolism and Pharmacokinetics, 31(2), 139-145. https://doi.org/10.1016/j.dmpk.2016.01.002

Lim, K. B., Kwon, S. J., Lee, S. I., Hwang, Y. J., & Naing, A. H. (2012). Influence of genotype, explant source, and gelling agent on in vitro shoot regeneration of chrysanthemum. Horticulture, Environment, and Biotechnology, 53, 329-335. https://doi.org/10.1007/s13580-012-0063-x

Micallef, M. J., Iwaki, K., Ishihara, T., Ushio, S., Aga, M., Kunikata, T., Koya- Miyata, S., Kimoto, T., Ikeda, M., & Kurimoto, M. (2002). The natural plant product tryptanthrinameliorates dextran sodium sulfate-induced colitis in mice. International Immunopharmacology, 2(4), 565-578. https://doi.org/10.1016/s1567-5769(01)00206-5

Muralidharan, E. M., & Mascarenhas, A. F. (1987). In vitro plantlet formation by organogenesisin E. camaldulensis and by somatic embryogenesis in Eucalyptus citriodora. Plant Cell Reports, 6, 256-259. https://doi.org/10.1007/bf00268494

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Ncanana, S., Brandt, W., Lindsey, G., & Farrant, J. (2005). Development of plant regeneration and transformation protocols for the desiccation-sensitive weeping lovegrass Eragrostis curvula. Plant Cell Reports, 24, 335-340. https://doi.org/10.1007/s00299-005-0940-1

Ozdemir, B. S., & Budak, H. (2018). Application of tissue culture and transformation techniques in model species Brachypodium distachyon. In G. Sablok, H. Budak & P. Ralph (Eds.), Brachypodium Genomics. Methods in Molecular Biology (Vol. 1667, pp. 289–310) New York: Humana Press. https://doi.org/10.1007/978-1-4939-7278-4_18

Shasmita, Rai, M. K., & Naik, S. K. (2017). Exploring plant tissue culture in Withania somnifera (L.) Dunal: in vitro propagation and secondary metabolite production. Critical Reviews in Biotechnology, 38(6), 836- 850. https://doi.org/10.1080/07388551.2017.1416453

Thwe, A. A., Kim, Y. B., Kim, S. U., & Park, S. U. (2012). In vitro shoot regeneration from stem internodes of Polygonum tinctorium. Life Science Journal, 9(4), 2059-2062.

Tokuyama-Nakai, S., Kimura, H., Ishihara, T, Jisaka, M., & Yokota, K. (2018). In vitro anti-inflammatory and antioxidant activities of 3,5,4’-trihydroxy-6,7-methylenedioxyflavone-O-glycosides and their aglycone from leaves of Polygonum tinctorium Lour. Applied Biochemistry Biotechnology, 184(2), 414-431. https://doi.org/10.1007/s12010-017-2555-8

Tomar, U. K., & Gupta, S. C. (1988). Somatic embryogenesis and organogenesis in callus cultures of a tree legume - Albizia richardiana King. Plant Cell Reports, 7(1), 70-73. https://doi.org/10.1007/bf00272982

Ullah, M. A., Uddin, M. I., Puteh, A. B., Haque, M. S., & Islam, M. S. (2015). Alternative gelling agents for in vitro propagation of orchid (Dendrobium sonia). Journal of Animal and Plant Sciences, 25(3), 792-797.

Varutharaju, K., Raju, C. S., Thilip, C., Aslam, A., & Shajahan, A. (2014). High efficiency direct shoot organogenesis from leaf segments of Aerva lanata (L.) Juss. Ex Schult by using thidiazuron. The Scientific World Journal, 2014, 652919. https://doi.org/10.1155/2014/652919

Yaseen, M., Ahmad, T., Sablok, G., Standardi, A., & Hafiz, I. A. (2013) Review: role of carbon sources for in vitro plant growth and development. Molecular Biology Reports, 40, 2837-2849. https://doi.org/10.1007/s11033-012-2299-z

Zhong, Y., Yoshinaka, Y., Takeda, T., Shimizu, N., Yoshizaki, S., Inagaki, Y., Matsuda, S., Honda, G., Fujii, N., & Yamamoto, N. (2005). Highly potent anti-HIV-1 activity isolated from fermented Polygonum tinctorium Aiton. Antiviral Research, 66(2-3), 119-128. https://doi.org/10.1016/j. antiviral.2005.02.003

Published

22-11-2022

How to Cite

Park, S. U., & Kil, K. J. (2022). Enhancement of shoot organogenesis in Polygonum tinctorium by sucrose and gelling agents. Journal of Phytology, 14, 127–131. https://doi.org/10.25081/jp.2022.v14.8055

Issue

Section

Articles