Facile synthesis and optimization of nickel oxide nanoparticles using Polianthes tuberosa extract and its anticancer activity

Authors

  • Kaveri Sundaram Centre for Material Chemistry, Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore-641 021, Tamil Nadu, India
  • Santhosh Kumar Mohanrao Department of Chemistry, Government College of Engineering, Dharmapuri-636 704, Tamil Nadu, India

DOI:

https://doi.org/10.25081/jp.2022.v14.7853

Keywords:

X-Ray diffraction, Infra-Red spectrum, Polianthes tuberosa, Anticancer studies, SEM

Abstract

NiO nanoparticle has been synthesized by a greener method using Polianthes tuberosa plant extract. The nanoparticle was characterized by UV-Visible, FT-IR, XRD and SEM instrumental techniques. The absorption band appeared at 269 nm in UV-Visible spectrum supported the formation of NiO nanoparticles. The IR spectrum analysis showed a broad band at 554 cm-1 characteristics of NiO nanoparticles. From the XRD results, the crystalline size and shape of NiO nanoparticles was determined to be 3.23 nm with a face centered cubic crystal. The NiO nanoparticles has been distributed well. From SEM results, the synthesized NiO sample has particle size between 5 and 11 nm range. The cytotoxic results showed significant activity of the synthesized NiO nanoparticles against MM2 and HeLa cells.

Downloads

Download data is not yet available.

References

Azhir, E., Etefagh, R., Shahtahmasebi, N., Mohammadi, M., Amiri, D., & Sarhaddi, R. (2012). Aspergillus niger biosensor based on tin oxide (SnO2) nanostructures: nanopowder and thin film. Indian Journal of Science and Technology, 5(7), 1-3.

Baker, S. E. (2006). Aspergillus niger genomics: past, present and into the future. Medical Mycology, 44(S1), S17–S21. https://doi.org/10.1080/13693780600921037

Bjoerksten, U., Moser, J., & Graetzel, M. (1994). Photoelectrochemical Studies on Nanocrystalline Hematite Films. Chemistry of Materials, 6(6), 858-863. https://doi.org/10.1021/cm00042a026

Blumenthal, C. Z. (2004). Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regulatory Toxicology and Pharmacology, 39(2), 214–228. https://doi.org/10.1016/j.yrtph.2003.09.002

Burt, E., Orris, P., & Buchanan, S. (2013). Scientific Evidence of Health Effects from Coal Use in Energy Generation. Chicago, IL, USA: School of Public Health, University of Illinois and Health Care Without Harm.

Gray, J. E., & Luan, B. (2002). Protective coatings on magnesium and its alloys- a critical review. Journal of Alloys and Compounds, 336(1-2), 88-113. https://doi.org/10.1016/S0925-8388(01)01899-0

Hosokawa, M., Nogi, K., Naito, M., & Yokoyama, T. (2007). Nanoparticle Technology Handbook. (1st ed.). Netherlands: Elsevier.

Ishihara, T., Kometani, K., Hashida, M., & Takita, Y. (1991). Application of mixed oxide capacitor to the selective carbon dioxide sensor: I. Measurement of carbon dioxide sensing characteristics. Journal of the Electrochemical Society, 138(1), 173–177.

Javed, I., Banzeer, A. A., Riaz, A., Mahboobeh, M., Akhtar, M., Syeda, A. Z., Amir, S., Muzzafar, S., Sobia, K., Siraj, U., Tariq, M., & Raffaele, C. (2020). Phytogenic synthesis of nickel oxide nanoparticles (NiO) using fresh leaves extract of Rhamnus triquetra (Wall.) and investigation of its multiple in vitro biological potentials, Biomedicines, 8(5), 117. https://doi.org/10.3390/biomedicines8050117

Lanje, A. S., Ningthoujam, R. S., Shrama, S. J., Vatsa, R., & Pode, R. B. (2010). Luminescence properties of Sn1-xFexO2 nanoparticles. International Journal of Nanotechnology, 7(9-12), 979-988.

Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L. V., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108(6), 2064–2110. https://doi.org/10.1021/cr068445e

Mitsuyu, T., Yamakazi, O., Ohji, K., & Wasa, K. (1982). Piezoelectric thin films of zinc oxide for saw devices. Ferroelectrics, 42(1), 233-240. https://doi.org/10.1080/00150198208008116

Naazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Mueller, E., Liska, P., Vlachopoulos, N., & Graetzel M. (1993). Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 115(14), 6382-6390. https://doi.org/10.1021/ja00067a063

Rao, K. G., Ashok, C. H., Rao, K. V., & Chakra, C. H. S. (2014, December 8-9). Structural properties of MgO Nanoparticles: Synthesized by Co-precipitation technique. Conference on Advanced Technology Oriented Materials (pp. 47-50). IJSR.

Regan, B. O., & Gratzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353,737-740. https://doi.org/10.1038/353737a0

Wojcieszak, R., Genet, M. J., Eloy, P., Gaigneaux, E. M., & Ruiz, P. (2010). Supported Pd nanoparticles prepared by a modified water-in-oil microemulsion method. Studies in Surface Science and Catalysis, 175, 789–792. https://doi.org/10.1016/S0167-2991(10)75161-2

Wolhfarth, E. P. (1980). Ferromagnetic Materials (Vol. 2). Elsevier, New York: North-Holland Publishing Company.

Published

22-07-2022

How to Cite

Sundaram, K., & Mohanrao, S. K. (2022). Facile synthesis and optimization of nickel oxide nanoparticles using Polianthes tuberosa extract and its anticancer activity. Journal of Phytology, 14, 64–67. https://doi.org/10.25081/jp.2022.v14.7853

Issue

Section

Articles