Antiviral medicinal plants of India as a potential tool against COVID-19: A review with ethno scientific evidence

Authors

  • D. Mishra Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar-26314, Uttarakhand, India,
  • A. Kumar Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar-26314, Uttarakhand, India
  • A. Tiwari Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar-26314, Uttarakhand, India
  • Deepika Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar-26314, Uttarakhand, India,
  • P. Chaturvedi Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar-26314, Uttarakhand, India

DOI:

https://doi.org/10.25081/jmhe.2023.v9.7340

Keywords:

COVID-19, Medicinal herbs, Viral diseases, Herbal remedy, Immunity boosters, Active principle

Abstract

Indian traditional medicinal systems are one of the oldest therapeutic systems in the world. Medicinal and aromatic plants play a dominant role in Indian traditional medicinal systems. Traditionally, many medicinal plants are used in India for their therapeutic relevance so much so that they have acquired a significant role in Indian religion as well. Many of these plants have proven antiviral effects. This review documents up-to-date information about many such medicinal herbs used in India which have got pharmacological significance in fighting viral infections. These plants surely have the potential to provide protection against Covid-19. The review presents a list of such plants along with their chemical ingredients and possible modes of action against the respective viral diseases. All information has been obtained by consulting the databases of Scopus, PubMed, Science Direct, Elsevier, Springer and relevant research papers and reports on COVID-19. The cited medicinal plants are used extensively in India as herbal remedies. The use of these plants is validated in light of research papers citing their ethnobotanical uses, important active principles and modes of action of the of medicinally important natural products. The plants listed have great potential to fight COVID-19 and other viral infections. Many of these are immunity boosters providing strength to the body to control the onset of diseases.

Downloads

Download data is not yet available.

References

Abbasi, A. M., Khan, M. A., Ahmad, M., Zafar, M., Khan, H., Muhammad, N., & Sultana, S. (2009). Medicinal plants used for the treatment of jaundice and hepatitis based on socio-economic documentation. African Journal of Biotechnology, 8(8), 1643-1650.

Abbasi, A. M., Khan, M. A., Shah, M. H., Shah, M. M., Pervez, A., & Ahmad, M. (2013). Ethnobotanical appraisal and cultural values of medicinally important wild edible vegetables of Lesser Himalayas-Pakistan. Journal of Ethnobiology and Ethnomedicine, 9(66), 1-13. DOI https://doi.org/10.1186/1746-4269-9-66

Abe, R., & Ohtani, K. (2013). An ethnobotanical study of medicinal plants and traditional therapies on Batan Island, the Philippines. Journal of Ethnopharmacology, 145(2), 554-565. https://doi.org/10.1016/j.jep.2012.11.029

Acharya, E., & Pokhrel, B. (2006). Ethno-medicinal plants used by Bantar of Bhaudaha, Morang, Nepal. Our nature, 4(1), 96-103. https://doi.org/10.3126/on.v4i1.508.

Ahmad, A., Ahad, A., Rao, A. Q., & Husnain, T. (2015). Molecular docking based screening of neem-derived compounds with the NS1 protein of Influenza virus. Bioinformation, 11(7), 359-365. https://doi.org/10.6026/97320630011359.

Ahmad, M., Zafar, M., Shahzadi, N., Yaseen, G., Murphey, T. M., & Sultana, S. (2018). Ethnobotanical importance of medicinal plants traded in Herbal markets of Rawalpindi-Pakistan. Journal of Herbal Medicine, 11, 78-89. https://doi.org/10.1016/j.hermed.2017.10.001

Ahmad, M., Zafar, M., Shahzadi, N., Yaseen, G., Murphey, T. M., & Sultana, S. (2018). Ethnobotanical importance of medicinal plants traded in Herbal markets of Rawalpindi-Pakistan. Journal of Herbal Medicine, 11, 78-89. https://doi.org/10.1016/j.hermed.2017.10.001

Ahvazi, M., Mozaffarian, V., Nejadsatari, T., Mojab, F., Charkhchiyan, M. M., Khalighi-Sigaroodi, F., & Ajani, Y. (2007). Medicinal application of native plants (Lamiaceae and Rosaceae family) in Alamut region in Gazvin province. Journal of Medicinal Plants, 6(24), 74-84.

Ajala, O. S., Jukov, A., & Ma, C. M. (2014). Hepatitis C virus inhibitory hydrolysable tannins from the fruits of Terminalia chebula. Fitoterapia, 99, 117-123. https://doi.org/10.1016/j.fitote.2014.09.014

Alhajj, M. S., Qasem, M. A., & Al-Mufarrej, S. I. (2020). Inhibitory activity of Illicium verum extracts against avian viruses. Advances in Virology, 2020, 4594635. https://doi.org/10.1155/2020/4594635

Amiri, M. S., & Joharchi, M. R. (2013). Ethnobotanical investigation of traditional medicinal plants commercialized in the markets of Mashhad, Iran. Avicenna Journal of Phytomedicine, 3(3), 254-271.

Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 300(5626), 1763-1767. https://doi.org/10.1126/science.1085658

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450-452. https://doi.org/10.1038/s41591-020-0820-9

Anisuzzaman, M., Rahman, A. H. M. M., Harun-Or-Rashid, M., Naderuzzaman, A. T. M., & Islam, A. K. M. R. (2007). An ethnobotanical study of Madhupur, Tangail. Journal of Applied Sciences Research, 3(7), 519-530.

Ashfaq, U. A., Jalil, A., & ul Qamar, M. T. (2016). Antiviral phytochemicals identification from Azadirachtaindica leaves against HCV NS3 protease: an in silico approach. Natural Product Research, 30(16), 1866-1869. https://doi.org/10.1080/14786419.2015.1075527

Asres, K., Bucar, F., Kartnig, T., Witvrouw, M., Pannecouque, C., & De Clercq, E. (2001). Antiviral activity against human immunodeficiency virus type 1 (HIV‐1) and type 2 (HIV‐2) of ethnobotanically selected Ethiopian medicinal plants. Phytotherapy Research, 15(1), 62-69. https://doi.org/10.1002/1099-1573(200102)15:1<62::AID-PTR956>3.0.CO;2-X

Astani, A., Reichling, J., & Schnitzler, P. (2011). Screening for antiviral activities of isolated compounds from essential oils. Evidence-based Complementary and Alternative Medicine, 2011, 253643. https://doi.org/10.1093/ecam/nep187

Au, D. T., Wu, J., Jiang, Z., Chen, H., Lu, G., & Zhao, Z. (2008). Ethnobotanical study of medicinal plants used by Hakka in Guangdong, China. Journal of Ethnopharmacology, 117(1), 41-50. https://doi.org/10.1016/j.jep.2008.01.016

Ayyanar, M., & Ignacimuthu, S. (2011). Ethnobotanical survey of medicinal plants commonly used by Kanitribals in Tirunelveli hills of Western Ghats, India. Journal of Ethnopharmacology, 134(3), 851-864. https://doi.org/10.1016/j.jep.2011.01.029

Ayyanar, M., Sankarasivaraman, K., Ignacimuthu, S., & Sekar, T. (2010). Plant species with ethnobotanical importance other than medicinal in Theni district of Tamil Nadu, Southern India. Asian Journal of Experimental Biological Sciences, 1(4), 765-771.

Azizi, H., & Keshavarzi, M. (2015). Ethnobotanical study of medicinal plants of Sardasht, Western Azerbaijan, Iran. Journal of Herbal Drugs, 6(2), 113-119.

Badam, L. (1997). In vitro antiviral activity of indigenous glycyrrhizin, licorice and glycyrrhizic acid (Sigma) on Japanese encephalitis virus. The Journal of Communicable Diseases, 29(2), 91-99.

Badam, L., Joshi, S. P., & Bedekar, S. S. (1999). In vitroantiviral activity of neem (Azadirachtaindica A. Juss) leaf extract against group B coxsackieviruses. The Journal of Communicable Diseases, 31(2), 79-90.

Balakrishnan, V., Prema, P., Ravindran, K. C., & Robinson, J. P. (2009). Ethnobotanical studies among villagers from Dharapuram taluk, Tamil Nadu, India. Global Journal of Pharmacology, 3(1), 08-14.

Balakumbahan, R., Rajamani, K., & Kumanan, K. (2010) Acorus calamus: an overview. Journal of Medicinal Plants Research, 4(25), 2740-2745.

Baliga, M. S., Meera, S., Mathai, B., Rai, M. P., Pawar, V., & Palatty, P. L. (2012). Scientific validation of the ethnomedicinal properties of the Ayurvedic drug Triphala: a review. Chinese Journal of Integrative Medicine, 18(12), 946-954. https://doi.org/10.1007/s11655-012-1299-x

Balkrishna, A., Solleti, S. K., Singh, H., Tomer, M., Sharma, N., & Varshney, A. (2020). Calcio-herbal formulation, Divya-Swasari-Ras, alleviates chronic inflammation and suppresses airway remodelling in mouse model of allergic asthma by modulating pro-inflammatory cytokine response. Biomedicine & Pharmacotherapy, 12(110063), 1-15. https://doi.org/10.1016/j.biopha.2020.110063

Bhandary, M. J., Chandrashekar, K. R., & Kaveriappa, K. M. (1995). Medical ethnobotany of the siddis of Uttara Kannada district, Karnataka, India. Journal of Ethnopharmacology, 47(3), 149-158. https://doi.org/10.1016/0378-8741(95)01274-H

Bilal, S., Mir, M. R., Parrah, J. D., Tiwari, B. K., Tripathi, V., Singh, P., & Abidi, A. B. (2013). Rhubarb: the wondrous drug. A review. International Journal of Pharmacy and Biological Sciences, 3(3), 228-233.

Borse, S., Joshi, M., Saggam, A., Bhat, V., Walia, S., Marathe, A., &Tillu, G. (2021). Ayurveda botanicals in COVID-19 management: an in silico multi-target approach. Plos One, 16(6), 1-29. https://doi.org/10.21203/rs.3.rs-30361/v1

Bouchentouf, S., & Missoum, N. (2020). Identification of Compounds from Nigella Sativa as New Potential Inhibitors of 2019 Novel Coronasvirus (Covid-19): Molecular Docking Study. Chem Rxiv, 2(2), 1-8. https://doi.org/10.26434/chemrxiv.12055716

Bouzabata, A., & Boukhari, A. (2014). Variation in the Traditional Knowledge of Curcuma longa L. in North-Eastern Algeria. International Journal of Pharmacological and Pharmaceutical Sciences, 8(11), 1227-1231.

Bulut, G., & Tuzlacı, E. (2015). An ethnobotanical study of medicinal plants in Bayramiç (Çanakkale-Turkey). Marmara Pharmaceutical Journal, 19(3), 268-282. https://doi.org/10.12991/mpj.201519392830

Cai, Z., Zhang, G., Tang, B., Liu, Y., Fu, X., & Zhang, X. (2015). Promising anti-influenza properties of active constituent of Withaniasomnifera ayurvedic herb in targeting neuraminidase of H1N1 influenza: computational study. Cell Biochemistry and Biophysics, 72(3), 727-739. https://doi.org/10.1007/s12013-015-0524-9

Camejo-Rodrigues, J., Ascensao, L., Bonet, M. À., & Valles, J. (2003). An ethnobotanical study of medicinal and aromatic plants in the Natural Park of “Serra de São Mamede”(Portugal). Journal of Ethnopharmacology, 89(2-3), 199-209. https://doi.org/10.1016/S0378-8741(03)00270-8

Chantrill, B. H., Coulthard, C. E., Dickinson, L., Inkley, G. W., Morris, W., & Pyle, A. H. (1952). The action of plant extracts on a bacteriophage of Pseudomonas pyocyanea and on influenza A virus. Microbiology, 6(1-2), 74-84. https://doi.org/10.1099/00221287-6-1-2-74

Chavan, R., & Chowdhary, A. (2014). In vitro inhibitory activity of Justicia adhatoda extracts against influenza virus infection and hemagglutination. International Journal of Pharmaceutical Sciences Review and Research, 25(2), 231-236.

Chen, C. H., Chou, T. W., Cheng, L. H., & Ho, C. W. (2011). In vitro anti-adenoviral activity of five Allium plants. Journal of the Taiwan Institute of Chemical Engineers, 42(2), 228-232. https://doi.org/10.1016/j.jtice.2010.07.011

Chen, D. Y., Shien, J. H., Tiley, L., Chiou, S. S., Wang, S. Y., Chang, T. J., & Hsu, W. L. (2010). Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chemistry, 119(4), 1346-1351. https://doi.org/10.1016/j.foodchem.2009.09.011

Chen, J. X., Xue, H. J., Ye, W. C., Fang, B. H., Liu, Y. H., Yuan, S. H., & Wang, Y. Q. (2009). Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biological and Pharmaceutical Bulletin, 32(8), 1385-1391. https://doi.org/10.1248/bpb.32.1385

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395(10223), 507-513. https://doi.org/10.1016/S0140-6736(20)30211-7

Chiang, L. C., Chiang, W., Chang, M. Y., & Lin, C. C. (2003). In vitro cytotoxic, antiviral and immunomodulatory effects of Plantago major and Plantagoasiatica. The American Journal of Chinese Medicine, 31(02), 225-234. https://doi.org/10.1142/S0192415X03000874

Chiang, L. C., Chiang, W., Chang, M. Y., Ng, L. T., & Lin, C. C. (2002). Antiviral activity of Plantago major extracts and related compounds in vitro. Antiviral Research, 55(1), 53-62. https://doi.org/10.1016/S0166-3542(02)00007-4

Chiang, L. C., Ng, L. T., Cheng, P. W., Chiang, W., & Lin, C. C. (2005). Antiviral activities of extracts and selected pure constituents of Ocimumbasilicum. Clinical and Experimental Pharmacology and Physiology, 32(10), 811-816. https://doi.org/10.1111/j.1440-1681.2005.04270.x

Chollom, S. C., Agada, G. O. A., Gotep, J. G., Mwankon, S. E., Dus, P. C., Bot, Y. S., &Okwori, A. E. J. (2012). Investigation of aqueous extract of Moringa oleifera lam seed for antiviral activity against newcastle disease virus in ovo. Journal of Medicinal Plants Research, 6(22), 3870-3875. https://doi.org/10.5897/JMPR12.394

Chung, T. H., Kim, J. C., Lee, C. Y., Moon, M. K., Chae, S. C., Lee, I. S., & Lee, I. P. (1997). Potential antiviral effects of Terminalia chebula, Sanguisorba officinalis, Rubuscoreanus and Rheum palmatumagainst duck hepatitis B virus (DHBV). Phytotherapy Research, 11(3), 179-182. https://doi.org/10.1002/(SICI)1099-1573(199705)

Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., & Doerr, H. W. (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet, 361(9374), 2045-2046. https://doi.org/10.1016/s0140-6736(03)13615-x

Davidson-Hunt, I. (2000). Ecological ethnobotany: stumbling toward new practices and paradigms, MASA Journal, 16(1), 1-13.

De Clercq, E. (2000). Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Medicinal Research Reviews, 20(5), 323-349. https://doi.org/10.1002/1098-1128(200009)20:5<323::AID-MED1>3.0.CO;2-A

De Clercq, E., & Li, G. (2016). Approved antiviral drugs over the past 50 years. Clinical Microbiology Reviews, 29(3), 695-747. https://doi.org/ 10.1128/CMR.00102-15

De Oliveira, A., Adams, S. D., Lee, L. H., Murray, S. R., Hsu, S. D., Hammond, J. R., & Chu, T. C. (2013). Inhibition of herpes simplex virus type 1 with the modified green tea polyphenol palmitoyl-epigallocatechin gallate. Food and Chemical Toxicology, 52, 207-215. https://doi.org/10.1016/j.fct.2012.11.006

Devaraj, S., Ismail, S., Ramanathan, S., Marimuthu, S., & Fei, Y. M. (2010). Evaluation of the hepatoprotective activity of standardized ethanolic extract of Curcuma xanthorrhiza Roxb. Journal of Medicinal Plants Research, 4(23), 2512-2517. https://doi.org/10.5897/JMPR10.453

Divya, C. S., & Pillai, M. R. (2006). Antitumor action of curcumin in human papilloma virus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP‐1 translocation, and modulation of apoptosis. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 45(5), 320-332. https://doi.org/10.1002/mc.20170

Dolatkhahi, M., Dolatkhahi, A., & Nejad, J. B. (2014). Ethnobotanical study of medicinal plants used in Arjan–Parishan protected area in Fars Province of Iran. Avicenna Journal of Phytomedicine, 4(6), 402-412.

Dutta, K., Ghosh, D., & Basu, A. (2009). Curcumin protects neuronal cells from Japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin–proteasome system. Journal of Neuroimmune Pharmacology, 4(3), 328-337. https://doi.org/10.1007/s11481-009-9158-2

Dwivedi, V. D., Bharadwaj, S., Afroz, S., Khan, N., Ansari, M. A., Yadava, U., & Kang, S. G. (2021). Anti-dengue infectivity evaluation of bioflavonoid from Azadirachtaindica by dengue virus serine protease inhibition. Journal of Biomolecular Structure and Dynamics, 39(4), 1417-1430.https://doi.org/10.1080/07391102.2020.1734485

Eggink, P. M., Maliepaard, C., Tikunov, Y., Haanstra, J. P. W., Bovy, A. G., & Visser, R. G. F. (2012). A taste of sweet pepper: Volatile and non-volatile chemical composition of fresh sweet pepper (Capsicum annuum) in relation to sensory evaluation of taste. Food Chemistry, 132(1), 301-310. https://doi.org/10.1016/j.foodchem.2011.10.081

Enmozhi, S. K., Raja, K., Sebastine, I., & Joseph, J. (2020). Andrographolide as a Potential Inhibitor of SARS-CoV-2 Main Protease: an in silico approach. Journal of Biomolecular Structure and Dynamics, 39(9), 3092-3098. https://doi.org/10.1080/07391102.2020.1760136

Faccin-Galhardi, L. C., Yamamoto, K. A., Ray, S., Ray, B., Linhares, R. E. C., & Nozawa, C. (2012). The in vitro antiviral property of Azadirachtaindica polysaccharides for poliovirus. Journal of Ethnopharmacology, 142(1), 86-90. https://doi.org/10.1016/j.jep.2012.04.018

Farnsworth, N. R., & Soejarto, D. D. (1991). Global importance of medicinal plants. The Conservation of Medicinal Plants, 26, 25-51.

Fernandes, M. J. B., Barros, A. V., Melo, M. S., & Simoni, I. C. (2012). Screening of Brazilian plants for antiviral activity against animal herpes viruses. Journal of Medicinal Plants Research, 6(12), 2261-2265. https://doi.org/10.5897/JMPR10.040

Gebreyohannes, G., & Gebreyohannes, M. (2013). Medicinal values of garlic: A review. International Journal of Medicine and Medical Sciences, 5(9), 401-408. https://doi.org/10.5897/IJMMS2013.0960

Gholamnezhad, Z., Boskabady, M. H., & Hosseini, M. (2014). Effect of Nigella sativa on immune response in treadmill exercised rat. BMC Complementary and Alternative Medicine, 14(1), 1-11.

Grover, A., Agrawal, V., Shandilya, A., Bisaria, V. S., & Sundar, D. (2011). Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A. In BMC Bioinformatics, 12(13), 1-9. https://doi.org/10.1186/1471-2105-12-S13-S22

Guan, W.-J., Ni, Z.-Y., Hu, Y., Liang, W.-H., Ou, C.-Q., He, J.-X., Liu, L., Shan, H., Lei, C.-L., Hui, D. S. C., Du, B., Li, L.-J., Zeng, G., Yuen, K.-Y., Chen, R.-C., Tang, C.-L., Wang, T., Chen, P.-Y., Xiang, J.,…Zhong, N.-S. (2020). Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine, 382(18), 1708-1720. https://doi.org/10.1056/NEJMoa2002032

Guha, S., Ghosal, S., & Chattopadhyay, U. (1996). Antitumor, immunomodulatory and anti-HIV effect of mangiferin, a naturally occurring glucosylxanthone. Chemotherapy, 42(6), 443-451. https://doi.org/10.1159/000239478

Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J.,& Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7(1), 1-10. https://doi.org/10.1186/s40779-020-00240-0

Gupta, A., Kumar, S., Dole, S., Deshpande, S., Deshpande, V., Singh, S., &Sasibhushan, V. (2017). Evaluation of Cyavanaprāśa on health and immunity related parameters in healthy children: a two arm, randomized, open labeled, prospective, multicenter, clinical study. Ancient Science of Life, 36(3), 141-150. https://doi.org/10.4103/asl.ASL817

Gupta, G. D., Sujatha, N., Dhanik, A., & Rai, N. P. (2010). Clinical evaluation of ShilajatuRasayana in patients with HIV infection. An International Quarterly Journal of Research in Ayurveda, 31(1), 28-32. https://doi.org/10.4103/0974-8520.68205

Gürdal, B., & Kültür, Ş. (2013). An ethnobotanical study of medicinal plants in Marmaris (Muğla, Turkey). Journal of Ethnopharmacology, 146(1), 113-126. https://doi.org/10.1016/j.jep.2012.12.012

Hamming, I., Timens, W., Bulthuis, M. L. C., Lely, A. T., Navis, G. J., & van Goor H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology and Bacteriology, 203, 631-637. https://doi.org/10.1002/path.1570

Hanif, S. M., Meher, M. M., & Anower, M. (2016). Field study on efficacy of red pepper (Capsicum annum) along with antibiotics against newcastle disease in broiler at Narail Sadar Upazilla, Bangladesh. Wayamba Journal of Animal Science, 8, 1460-1466.

He, W., Han, H., Wang, W., & Gao, B. (2011). Anti-influenza virus effect of aqueous extracts from dandelion. Virology Journal, 8(1), 1-11. https://doi.org/10.1186/1743-422X-8-538.

Ho, H. Y., Cheng, M. L., Weng, S. F., Leu, Y. L., & Chiu, D. T. Y. (2009). Antiviral effect of epigallocatechin gallate on enterovirus 71. Journal of Agricultural and Food Chemistry, 57(14), 6140-6147. https://doi.org/10.1021/jf901128u

Hossan, M. S., Hanif, A., Khan, M., Bari, S., Jahan, R., &Rahmatullah, M. (2009). Ethnobotanical survey of the Tripura tribe of Bangladesh. American Eurasian Journal of Sustainable Agriculture, 3(2), 253-261. https://doi.org/10.1111/j.1440-1681.2005.04270.x

Hu, B., Ge, X., Wang, L. F., & Shi, Z. (2015). Bat origin of human coronaviruses. Virology Journal, 12(1), 1-10. https://doi.org/10.1186/s12985-015-0422-1

Hussain, A., Shadma, W., Maksood, A., & Ansari, S. H. (2013). Protective effects of Picrorhizakurroa on cyclophosphamide-induced immunosuppression in mice. Pharmacognosy Research, 5(1), 30-35. https://doi.org/10.4103/0974-8490.105646

Hussain, K., Shahazad, A., & Zia-ul-Hussnain, S. (2008). An ethnobotanical survey of important wild medicinal plants of Hattar district Haripur, Pakistan. Ethnobotanical Leaflets, 2008(1), 1-9. https://opensiuc.lib.siu.edu/ebl/vol2008/iss1/5

Ikram, M. (1975). A review on the chemical and pharmacological aspects of genus Berberis. Planta Medica, 28(8), 353-358. https://doi.org/10.1055/s-0028-1097869

Ishtiaq, M., Hanif, W., Khan, M. A., Ashraf, M., & Butt, A. M. (2007). An ethnomedicinal survey and documentation of important medicinal folklore food phytonims of flora of Samahni valley, (Azad Kashmir) Pakistan. Pakistan Journal of Biological Sciences, 10(13), 2241-2256. https://doi.org/10.3923/pjbs.2007.2241.2256

Jabeen, S., Shah, M. T., Khan, S., & Hayat, M. Q. (2010). Determination of major and trace elements in ten important folk therapeutic plants of Haripur basin, Pakistan. Journal of Medicinal Plants Research, 4(7), 559-566. https://doi.org/10.5897/JMPR10.015

Jadhav, P., Kapoor, N., Thomas, B., Lal, H., &Kshirsagar, N. (2012). Antiviral potential of selected Indian medicinal (ayurvedic) plants against herpes simplex virus 1 and 2. North American Journal of Medical Sciences, 4(12), 641-647. https://doi.org/10.4103/1947-2714.104316

Jain, D. L., Baheti, A. M., Jain, S. R., & Khandelwal, K. R. (2010). Use of medicinal plants among tribes in Satpuda region of Dhule and Jalgaon districts of Maharashtra - an ethnobotanical survey. Indian Journal of Traditional Knowledge, 9(1), 152-157.

Jarić, S., Mačukanović-Jocić, M., Djurdjević, L., Mitrović, M., Kostić, O., Karadžić, B., & Pavlović, P. (2015). An ethnobotanical survey of traditionally used plants on Suva planina mountain (south-eastern Serbia). Journal of Ethnopharmacology, 175, 93-108. https://doi.org/10.1016/j.jep.2015.09.002

Jarić, S., Popović, Z., Mačukanović-Jocić, M., Djurdjević, L., Mijatović, M., Karadžić, B., & Pavlović, P. (2007). An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). Journal of Ethnopharmacology, 111(1), 160-175. https://doi.org/10.1016/j.jep.2006.11.007

Javed, T., Ashfaq, U. A., Riaz, S., Rehman, S., &Riazuddin, S. (2011). In-vitro antiviral activity of Solanum nigrum against Hepatitis C virus. Virology Journal, 8(1), 1-7. http://www.virologyj.com/content/8/1/26

Jayati, B. A., Kumar, A., Goel, A., Gupta, S., & Rahal, A. (2013). In vitro antiviral potential of Ocimum sanctum leaves extract against New Castle Disease Virus of poultry. International Journal of Microbiology and Immunology Research, 2(7), 51-55.

Jena, A. B., Kanungo, N., Nayak, V., Chainy, G. B. N., & Dandapat, J. (2021). Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: insights from computational studies. Scientific Reports, 11, 2043. https://doi.org/10.1038/s41598-021-81462-7

Joshi, G., Sharma, S., Acharya, J., & Parida, M. (2014). Assessment of In vitro antiviral activity of Ocimum sanctum (Tulsi) against pandemic swine flu H1N1 virus infection. World Research Journal of Antimicrobial Agents, 3(1), 62-67.

Kambizi, L. G. B. M., Goosen, B. M., Taylor, M. B., & Afolayan, A. J. (2007). Anti-viral effects of aqueous extracts of Aloe ferox and Withania somnifera on herpes simplex virus type 1 in cell culture: research in action. South African Journal of Science, 103(9), 359-360.

Kaushik, R. (2018). Trikatu-A combination of three bioavailability enhancers. International Journal of Green Pharmacy, 12(03), 437-441. https://doi.org/10.22377/ijgp.v12i03.2002

Kaushik, S., Jangra, G., Kundu, V., Yadav, J. P., & Kaushik, S. (2020). Anti-viral activity of Zingiberofficinale (Ginger) ingredients against the Chikungunya virus. Virus Disease, 31(3), 270-276. https://doi.org/10.1007/s13337-020-00584-0

Keyaerts, E., Vijgen, L., Pannecouque, C., Van Damme, E., Peumans, W., Egberink, H., Balzarini, J., & Van Ranst, M. (2007). Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Research, 75(3), 179-187. https://doi.org/10.1016/j.antiviral.2007.03.003

Khan, A. A., Ali, F., Ihsan, M., Hayat, K., & Nabi, G. (2015). Ethnobotanical study of the medicinal plants of Tehsil Charbagh, district Swat, Khyber Pakhtunkhwa, Pakistan. American Eurasian Journal of Agriculture and Environmental Sciences, 15, 1464-1474. https://doi.org/10.5829/idosi.aejaes.2015.15.7.94235

Kharisma, V. D., Septiadi, L., & Syafrudin, S. (2018). Prediction of novel bioactive compound from Zingiberofficinale as non-nucleoside reverse transcriptase inhibitors (NNRTIs) of HIV-1 through computational study. Bioinformatics and Biomedical Research Journal, 1(2), 49-55. https://doi.org/10.11594/bbrj.01.02.05

Kichu, M., Malewska, T., Akter, K., Imchen, I., Harrington, D., Kohen, J., & Jamie, J. F. (2015). An ethnobotanical study of medicinal plants of Chungtia village, Nagaland, India. Journal of Ethnopharmacology, 166, 5-17. https://doi.org/10.1016/j.jep.2015.02.053

Kim, H. J., Yoo, H. S., Kim, J. C., Park, C. S., Choi, M. S., Kim, M., & Ahn, J. K. (2009). Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. Journal of Ethnopharmacology, 124(2), 189-196. https://doi.org/10.1016/j.jep.2009.04.046

Kim, H. Y., Shin, H. S., Park, H., Kim, Y. C., Yun, Y. G., Park, S., & Kim, K. (2008). In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliaecortex, Coptidisrhizoma, and Phellodendron cortex. Journal of Clinical Virology, 41(2), 122-128. https://doi.org/10.1016/j.jcv.2007.10.011

Kim, J. M., Chung, Y. S., Jo, H. J., Lee, N. J., Kim, M. S., Woo, S. H., & Han, M. G. (2020). Identification of coronavirus isolated from a patient in Korea with COVID-19. Osong Public Health and Research Perspectives, 11(1), 3-7. https://doi.org/10.24171/j.phrp.2020.11.1.02

Korkmaz, M., Karakuş, S., Özçelik, H., & Selvi, S. (2016). An ethnobotanical study on medicinal plants in Erzincan, Turkey. Indian Journal of Traditional Knowledge, 15(2), 192-202.

Krishnasamy, R., Baba, M., Bharath, M. V., Phuntsho, J., Arunachalam, D., Natarajan, K., & Ramasamy, M. (2020). In silico analysis of active compounds from siddha herbal infusion of AmmaiyarKoondhalKudineer (Akk) against SARS-CoV-2 spike protein and its ACE2 receptor complex. Preprint. http://doi.org/10.2139/ssrn.3578294

Kultur, S. (2007). Medicinal plants used in Kırklareli province (Turkey). Journal of Ethnopharmacology, 111(2), 341-364. https://doi.org/10.1016/j.jep.2006.11.035

Kumar, A. H. (2020). Molecular docking of natural compounds from tulsi (Ocimum sanctum) and neem (Azadirachtaindica) against SARS-CoV-2 protein targets. Biology, Engineering, Medicine and Science Reports, 6(1), 1-9. https://doi.org/10.21203/rs.3.rs-27151/v1

Kumar, K. M., & Ramaiah, S. (2011). Pharmacological importance of Echinacea purpurea. International Journal of Pharma and Bio Sciences, 2(4), 304-314.

Kumar, S. A. & Pandey, S. A. (2015). An ethnobotanical study of local plants and their medicinal importance in Tons river area, Dehradun, Uttarakhand. Indian Journal of Tropical Biodiversity, 23(2), 227-231.

Kumar, S., & Singh, A. (2019). An ethnobotanical, phytochemical and antioxidant activity of Spinacia oleracea, L. Journal of Pharmaceutical Sciences and Research, 11(7), 2521-2525.

Kurapati, K. R. V., Atluri, V. S., Samikkannu, T., Garcia, G., & Nair, M. P. (2016). Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (HAND): a brief overview. Frontiers in Microbiology, 12(6), 1444. https://doi.org/ 10.3389/fmicb.2015.01444

Kutluay, S. B., Doroghazi, J., Roemer, M. E., & Triezenberg, S. J. (2008). Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology, 373(2), 239-247. https://doi.org/10.1016/j.virol.2007.11.028

Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215-220. https://doi.org/10.1038/s41586-020-2180-5

Lee, C. D., Ott, M., Thyagarajan, S. P., Shafritz, D. A., Burk, R. D., & Gupta, S. (1996). Phyllanthus amarus down‐regulates hepatitis B virus mRNA transcription and replication. European Journal of Clinical Investigation, 26(12), 1069-1076. https://doi.org/10.1046/j.1365-2362.1996.410595

Lee-Huang, S., Zhang, L., Huang, P. L., Chang, Y. T., & Huang, P. L. (2003). Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochemical and Biophysical Research Communications, 307(4), 1029-1037. https://doi.org/10.1016/s0006-291x(03)01292-0

Li, S., Hattori, T., & Kodama, E. N. (2011). Epigallocatechin gallate inhibits the HIV reverse transcription step. Antiviral Chemistry and Chemotherapy, 21(6), 239-243. https://doi.org/10.3851/IMP1774

Ling, J. X., Wei, F., Li, N., Li, J. L., Chen, L. J., Liu, Y. Y., & Yang, Z. Q. (2012). Amelioration of influenza virus-induced reactive oxygen species formation by epigallocatechin gallate derived from green tea. Acta Pharmacologica Sinica, 33(12), 1533-1541. https://doi.org/10.1038/aps.2012.80

Liu, G., Xiong, S., Xiang, Y. F., Guo, C. W., Ge, F., Yang, C. R., &Kitazato, K. (2011). Antiviral activity and possible mechanisms of action of pentagalloylglucose (PGG) against influenza A virus. Archives of Virology, 156(8), 1359-1369. https://doi.org/10.1007/s00705-011-0989-9

Lu, G., Wang, Q., Gao, G. F. (2015) Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends in Microbiology, 23(8), 468-478. https://doi.org/10.1016/j.tim.2015.06.003

Lung, J., Lin, Y. S., Yang, Y. H., Chou, Y. L., Shu, L. H., Cheng, Y. C. & Wu, C. Y. (2020). The potential chemical structure of anti‐SARS‐CoV‐2 RNA‐dependent RNA polymerase. Journal of Medical Virology, 92(6), 693-697. https://doi.org/10.1002/jmv.25761

Majumdar, D. D. (2013). Recent updates on pharmaceutical potential of plant protease inhibitors. International Journal of Medicine and Pharmaceutical Sciences, 3(4), 101-120.

Manganelli, R. E. U., Zaccaro, L., & Tomei, P. E. (2005). Antiviral activity in vitro of Urticadioica L., Parietariadiffusa M. et K. and Sambucus nigra L. Journal of Ethnopharmacology, 98(3), 323-327. https://doi.org/10.1016/j.jep.2005.01.021

Maurya, D. K. (2020). Evaluation of Yashtimadhu (Glycyrrhiza glabra) active phytochemicals against novel coronavirus (SARS-CoV-2). Bioinformatics. https://doi.org/10.21203/rs.3.rs-26480/v1

Mir, A., Ismatullah, H., Rauf, S., & Niazi, U. H. (2016). Identification of bioflavonoid as fusion inhibitor of dengue virus using molecular docking approach. Informatics in Medicine Unlocked, 3, 1-6. https://doi.org/10.1016/j.imu.2016.06.001

Mounce, B. C., Cesaro, T., Carrau, L., Vallet, T., &Vignuzzi, M. (2017). Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Research, 142, 148-157. https://doi.org/10.1016/j.antiviral.2017.03.014

Mukherjee, R., Dash, P. K., & Ram, G. C. (2005). Immunotherapeutic potential of Ocimum sanctum (L) in bovine subclinical mastitis. Research in Veterinary Science, 79(1), 37-43. https://doi.org/10.1016/j.rvsc.2004.11.001

Nadkarni, K. M., & Nadkarni, A. K. (1976). Indian Materia Medica. Bombay, India: Popular Prakashan Pvt. Ltd.

Narayan, D., & Singh, P. K. (2017). Ethnobotanical importance and herbal medicine in Vindhya region of Eastern Uttar Pradesh, India. Journal of Medicinal Plants Research, 11(25), 403-413. https://doi.org/10.5897/JMPR2017.6351

Narayanan, M. R., Mithunlal, S., Sujanapal, P., Kumar, N. A., Sivadasan, M., Alfarhan, A. H., & Alatar, A. A. (2011). Ethnobotanically important trees and their uses by Kattunaikka tribe in Wayanad Wildlife Sanctuary, Kerala, India. Journal of Medicinal Plants Research, 5(4), 604-612.

Nasab, F. K., & Khosravi, A. R. (2014). Ethnobotanical study of medicinal plants of Sirjan in Kerman Province, Iran. Journal of Ethnopharmacology, 154(1), 190-197. https://doi.org/10.1016/j.jep.2014.04.003

Nekooeian, A. A., Moatari, A., &Motamedifard, M. (2006). The antiinfluenza virus activity of hydroalcoholic extract of Olive leaves. Iranian Journal of Pharmaceutical Sciences, 2(3), 163-168.

Niranjan Reddy, V. L., Malla Reddy, S., Ravikanth, V., Krishnaiah, P., Venkateshwar Goud, T., Rao, T. P., &Venkateswarlu, Y. (2005). A new bis-andrographolide ether from Andrographis paniculatanees and evaluation of anti-HIV activity. Natural Product Research, 19(3), 223-230. DOI: 10.1080/14786410410001709197

Notka, F., Meier, G., & Wagner, R. (2004). Concerted inhibitory activities of Phyllanthus amarus on HIV replication in vitro and ex vivo. Antiviral Research, 64(2), 93-102. https://doi.org/10.1016/j.antiviral.2004.06.010

Nworu, C. S., Okoye, E. L., Ezeifeka, G. O., &Esimone, C. O. (2013). Extracts of Moringa oleifera Lam. showing inhibitory activity against early steps in the infectivity of HIV-1 lentiviral particles in a viral vector-based screening. African Journal of Biotechnology, 12(30), 4866-4873. https://doi.org/10.5897/AJB2013.12343

Obata, O. O., &Aigbokhan, E. I. (2012). Ethnobotanical practices among the people of Oka-Akoko, Nigeria. Plant Archives, 12(2), 627-638.

Oh, E. G., Kim, K. L., Shin, S. B., Son, K. T., Lee, H. J., Kim, T. H., & Kim, J. H. (2013). Antiviral activity of green tea catechins against feline calicivirus as a surrogate for norovirus. Food Science and Biotechnology, 22(2), 593-598. https://doi.org/10.1007/s10068-013-0119-4

Olivieri, F., Prasad, V., Valbonesi, P., Srivastava, S., Ghosal-Chowdhury, P., Barbieri, L., & Stirpe, F. (1996). A systemic antiviral resistance-inducing protein isolated from Clerodendrum inerme Gaertn. is a polynucleotide: adenosine glycosidase (ribosome-inactivating protein). FEBS letters, 396(2-3), 132-134. https://doi.org/10.1016/0014-5793(96)01089-7

Onifade, A. A., Jewell, A. P., & Adedeji, W. A. (2013). Nigella sativa concoction induced sustained seroreversion in HIV patient. African Journal of Traditional, Complementary and Alternative Medicines, 10(5), 332-335. https://doi.org/10.4314/ajtcam.v10i5.18

Ooi, L. S., Ho, W. S., Ngai, K. L., Tian, L., Chan, P. K., Sun, S. S., & Ooi, V. E. (2010). Narcissus tazetta lectin shows strong inhibitory effects against respiratory syncytial virus, influenza A (H1N1, H3N2, H5N1) and B viruses. Journal of Biosciences, 35(1), 95-103. https://doi.org/10.1007/s12038-010-0012-8

Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., & Qian, Z. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature communications, 11(1), 1-12. https://doi.org/10.1038/s41467-020-15562-9

Panvilai, S., Napaswad, C., Limthongkul, J., & Akkarawongsapat, R. (2021). Aqueous extracts of Thai medicinal plants possess anti-HIV-1 activity. Journal of Herbs, Spices & Medicinal Plants, 27(1), 1-10. https://doi.org/10.1080/10496475.2020.1753276

Partha, P. (2014). Ethnobotany of the Laleng (Patra) Community in Bangladesh. Journal of Pharmacognosy and Phytochemistry, 2(6), 173-184.

Patwardhan, B., Warude, D., Pushpangadan, P., & Bhatt, N. (2005). Ayurveda and traditional Chinese medicine: a comparative overview, Evidence-based Complementary and Alternative Medicine, 2(4), 465-473. https://doi.org/10.1093/ecam/neh140

Penzak, S. R., Robertson, S. M., Hunt, J. D., Chairez, C., Malati, C. Y., Alfaro, R. M., Stevenson, J. M., & Kovacs, J. A. (2010). Echinacea purpurea significantly induces cytochrome P450 3A activity but does not alter lopinavir‐ritonavir exposure in healthy subjects. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 30(8), 797-805. https://doi.org/10.1592/phco.30.8.797

Pleschka, S., Stein, M., Schoop, R., & Hudson, J. B. (2009). Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virology Journal, 6(1), 1-9. https://doi.org/10.1186/1743-422X-6-197

Polat, R., & Satıl, F. (2012). An ethnobotanical survey of medicinal plants in Edremit Gulf (Balıkesir–Turkey). Journal of Ethnopharmacology, 139(2), 626-641. https://doi.org/10.1016/j.jep.2011.12.004

Pompei, R., Flore, O., Marccialis, M. A., Pani, A., & Loddo, B. (1979). Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature, 281, 689-690. https://doi.org/10.1038/281689a0

Pongtuluran, O. B., &Rofaani, E. (2015). Antiviral and immunostimulant activities of Andrographis paniculata. HAYATI Journal of Biosciences, 22(2), 67-72. https://doi.org/10.4308/hjb.22.2.67

Pruthvish, R., & Gopinatha, S. M. (2018). Antiviral prospective of Tinosporacordifolia on HSV-1. International Journal of Current Microbiology and Applied Sciences, 7(1), 3617-3624. https://doi.org/10.20546/ijcmas.2018.701.425

Rahayu, S. M., & Andini, A. S. (2019). Ethnobotanical Study on Medicinal Plants in Sesaot Forest, Narmada, West Lombok, Indonesia. Biosaintifika: Journal of Biology & Biology Education, 11(2), 234-242. https://doi.org/10.15294/biosaintifika.v11i2.19314

Rajput, S. B., Tonge, M. B., &Karuppayil, S. M. (2014). An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (Sweet flag) and other Acorusspecies. Phytomedicine, 21(3), 268-276. https://doi.org/10.1016/j.phymed.2013.09.020

Ramya, S., Neethirajan, K., & Jayakumararaj, R. (2012). Profile of bioactive compounds in Syzygiumcumini–a review. Journal of Pharmacy research, 5(8), 4548-4553.

Ranjan, P., Mohapatra, B., & Das, P. (2020). A rational drug designing: What bioinformatics approach tells about the wisdom of practicing traditional medicines for screening the potential of Ayurvedic and natural compounds for their inhibitory effect against COVID-19 Spike, Indian strain Spike, Papain-like protease and Main Protease protein. Preprint. https://doi.org/10.21203/rs.3.rs-30366/v1

Rashid, A., & Marwat, S. K. (2006). Ethnobotanical study of important wild plants of Bahadur Khel tract (tehsil Banda Daud Shah) in Karak district. GomalUniv Journal of Biological Research, 2(2), 165-172.

Rashid, S., Ahmad, M., Zafar, M., Sultana, S., Ayub, M., Khan, M. A., & Yaseen, G. (2015). Ethnobotanical survey of medicinally important shrubs and trees of Himalayan region of Azad Jammu and Kashmir, Pakistan. Journal of Ethnopharmacology, 166, 340-351. https://doi.org/10.1016/j.jep.2015.03.042

Rathinavel, T., Palanisamy, M., Palanisamy, S., Subramanian, A., &Thangaswamy, S. (2020). Phytochemical 6-Gingerol–A promising Drug of choice for COVID-19. International Journal on Advanced Science, Engineering and Information Technology, 6(4), 1482-9. https://doi.org/10.29294/IJASE.6.4.2020.1482-1489

Ratia, K., Pegan, S., Takayama, J., Sleeman, K., Coughlin, M., Baliji, S., & Mesecar, A. D. (2008). A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proceedings of the National Academy of Sciences, 105(42), 16119-16124. https://doi.org/10.1073/pnas.0805240105

Ravikumar, Y. S., Ray, U., Nandhitha, M., Perween, A., Naika, H. R., Khanna, N., & Das, S. (2011). Inhibition of hepatitis C virus replication by herbal extract: Phyllanthus amarus as potent natural source. Virus Research, 158(1-2), 89-97. https://doi.org/10.1016/j.virusres.2011.03.014

Ravishankar, B., & Shukla, V. J. (2007). Indian systems of medicine: a brief profile. African Journal of Traditional, Complementary and Alternative Medicines, 4(3), 319-337.

Rehman, S., Ashfaq, U. A., Riaz, S., Javed, T., & Riazuddin, S. (2011). Antiviral activity of Acacia nilotica against Hepatitis C virus in liver infected cells. Virology Journal, 8(1), 1-6. https://doi.org/10.1186/1743-422X-8-220

Robinson Jr, W. E. (1998). L-chicoric acid, an inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase, improves on the in vitro anti-HIV-1 effect of Zidovudine plus a protease inhibitor (AG1350). Antiviral Research, 39(2), 101-111. https://doi.org/10.1016/S0166-3542(98)00037-0

Romeilah, R. M., Fayed, S. A., & Mahmoud, G. I. (2010). Chemical compositions, antiviral and antioxidant activities of seven essential oils. Journal of Applied Sciences Research, 6(1), 50-62.

Roschek Jr, B., Fink, R. C., McMichael, M. D., Li, D., & Alberte, R. S. (2009). Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry, 70(10), 1255-1261. https://doi.org/10.1016/j.phytochem.2009.06.003

Sagar, V., & Kumar, A. H. (2020). Efficacy of natural compounds from Tinosporacordifolia against SARS-CoV-2 protease, surface glycoprotein and RNA polymerase. Virology, 6(1), 1-10. https://doi.org/10.21203/rs.3.rs-27375/v1

Saha, M. R., Kar, P., Sen, A., & De Sarker, D. (2014). Ethnobotany of Chanchal Block of Malda District of West Bengal (India): plants used in local healthcare. Pleione, 8(2), 381-390.

Saha, S., & Ghosh, S. (2012). Tinosporacordifolia: one plant, many roles. Ancient Science of Life, 31(4), 151-159. https://doi.org/ 10.4103/0257-7941.107344

Sahu, P. K., Kumari, A., Sao, S., Singh, M., & Pandey, P. (2013). Sacred plants and their Ethno-botanical importance in central India: A mini review. International Journal of Pharmacy and Life Sciences, 4(8), 439-446.

Saikia, S., Bordoloi, M., Sarmah, R., & Kolita, B. (2019). Antiviral compound screening, peptide designing, and protein network construction of Influenza A virus (strain a/Puerto Rico/8/1934 H1N1). Drug Development Research, 80(1), 106-124. https://doi.org/10.1002/ddr.21475

Sairam, K., Hemalatha, S., Kumar, A., Srinivasan, T., Ganesh, J., Shankar, M., & Venkataraman, S. (2003). Evaluation of anti-diarrhoeal activity in seed extracts of Mangiferaindica. Journal of Ethnopharmacology, 84(1), 11-15. https://doi.org/10.1016/S0378-8741(02)00250-7

Samy, R. P., Thwin, M. M., Gopalakrishnakone, P., & Ignacimuthu, S. (2008). Ethnobotanical survey of folk plants for the treatment of snakebites in Southern part of Tamil Nadu, India. Journal of Ethnopharmacology, 115(2), 302-312. https://doi.org/10.1016/j.jep.2007.10.006

San Chang, J., Wang, K. C., Yeh, C. F., Shieh, D. E., & Chiang, L. C. (2013). Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology, 145(1), 146-151. https://doi.org/10.1016/j.jep.2012.10.043

Saotoing, P., Vroumsia, P., Tchobsala, Tchuenguem, F. F., Njan, N. A., Messi, J. (2011). Medicinal plants used in traditional treatment of malaria in Cameroon. Journal of Ecology and the Natural Environment, 3(3), 104-117.

Sathya, V., & Gopalakrishnan, V. K. (2013). In-silico ADMET prediction of phytochemicals in Camellia sinensis and Citrus sinensis. International Journal of Pharmaceutical Sciences and Research, 4(4), 1635-1637.

Sen, P. (1993). Therapeutic potentials of Tulsi: from experience to facts. Drugs News & Views, 1(2), 15-21.

Senthilvel, P., Lavanya, P., Kumar, K. M., Swetha, R., Anitha, P., Bag, S., Sarveswari, S., Vijayakumar, V., Ramaiah, S., & Anbarasu, A. (2013). Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly. Bioinformation, 9(18), 889-895. https://doi.org/10.6026/97320630009889

Serkedjieva, J., Manolova, N., Zgórniak‐Nowosielska, I., Zawilińska, B., & Grzybek, J. (1990). Antiviral activity of the infusion (SHS‐174) from flowers of Sambucus nigra L., aerial parts of Hypericum perforatum L., and roots of Saponaria officinalis L. against influenza and herpes simplex viruses. Phytotherapy Research, 4(3), 97-100. https://doi.org/10.1002/ptr.2650040305

Shapoo, G. A., Kaloo, Z. A., Ganie, A. H., & Singh, S. (2013). Ethnobotanical survey and documentation of some orchid species of Kashmir Himalaya, J&K-India. International Journal of Pharmaceutical and Biological Research, 4(2), 32-40.

Sharma, N. (2019). Efficacy of Garlic and Onion against virus, International Journal of Pharmaceutical Sciences Research, 10(4), 3578-3586. https://doi.org/10.26452/ijrps.v10i4.1738

Sharma, N., Mishra, K. P., Chanda, S., Bhardwaj, V., Tanwar, H., Ganju, L., & Singh, S. B. (2019). Evaluation of anti-dengue activity of Carica papaya aqueous leaf extract and its role in platelet augmentation. Archives of Virology, 164(4), 1095-1110.https://doi.org/10.1007/s00705-019-04179-z

Shende, J. J., Rajurkar, B. M., Mhaiskar, M. N., & Dalal, L. P. (2014). Ethnobotanical studies of Samudrapur Tahsil of Wardha district. IOSR Journal of Pharmacy and Biological Science, 9(6), 16-23. https://doi.org/10.9790/3008-09651623

Si, X., Wang, Y., Wong, J., Zhang, J., McManus, B. M., & Luo, H. (2007). Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication. Journal of Virology, 81(7), 3142-3150. https://doi.org/10.1128/JVI.02028-06

Silva, J. K. R. D., Figueiredo, P. L. B., Byler, K. G., & Setzer, W. N. (2020). Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 infection: an in-silico investigation. International Journal of Molecular Sciences, 21(10), 3426. https://doi.org/10.3390/ijms21103426

Singh, A., & Singh, P. K. (2009). An ethnobotanical study of medicinal plants in Chandauli District of Uttar Pradesh, India. Journal of Ethnopharmacology, 121(2), 324-329. https://doi.org/10.1016/j.jep.2008.10.018

Singh, H. (2008). Importance of local names of some useful plants in ethnobotanical study. Indian Journal of Traditional Knowledge, 7(2), 365-370.

Singh, H., Husain, T., Agnihotri, P., Pande, P. C., & Khatoon, S. (2014). An ethnobotanical study of medicinal plants used in sacred groves of Kumaon Himalaya, Uttarakhand, India. Journal of Ethnopharmacology, 154(1), 98-108. https://doi.org/10.1016/j.jep.2014.03.026

Singh, Y. N. (1986). Traditional medicine in Fiji: some herbal folk cures used by Fiji Indians. Journal of Ethnopharmacology, 15(1), 57-88. https:// doi.org/10.1016/0378-8741(86)90104-2

Song, W. Y., Ma, Y. B., Bai, X., Zhang, X. M., Gu, Q., Zheng, Y. T., & Chen, J. J. (2007). Two new compounds and anti-HIV active constituents from Illicium verum. Planta Medica, 73(04), 372-375. https://doi.org/10.1055/s-2007-967162

Sood, R, Swarup D, Bhatia S, S., Kulkarni, D. D., Dey, S., Saini, M., & Dubey, S. C. (2012) Antiviral activity of crude extracts of Eugenia jambolana Lam. against highly pathogenic avian influenza (H5N1) virus. Indian Journal of Experimental Biology, 50(3), 179-186.

Sorice, A., Guerriero, E., Capone, F., Colonna, G., Castello, G., & Costantini, S. (2014). Ascorbic acid: its role in immune system and chronic inflammation diseases. Mini Reviews in Medicinal Chemistry, 14(5), 444-452. https://doi.org/10.2174/1389557514666140428112602

Srivastava, A. K., Kumar, A., & Misra, N. (2020). On the inhibition of COVID-19 protease by Indian herbal plants: an in silico investigation. arXiv (Preprint), 2004, 03411. https://doi.org/10.48550/arXiv.2004.03411

Sui, Z., Salto, R., Li, J., Craik, C., & de Montellano, P. R. O. (1993). Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorganic & Medicinal Chemistry, 1(6), 415-422. https://doi.org/10.1016/S0968-0896(00)82152-5

Sujarwo, W., & Caneva, G. (2015). Ethnobotanical study of cultivated plants in home gardens of traditional villages in Bali (Indonesia). Human Ecology, 43(5), 769-778. https://doi.org/10.1007/s10745-015-9775-8

Sun, Z., Yu, C., Wang, W., Yu, G., Zhang, T., Zhang, L., & Wei, K. (2018). Aloe polysaccharides inhibit influenza A virus infection—a promising natural anti-flu drug. Frontiers in Microbiology, 9, 2338-2338. https://doi.org/10.1007/s10745-015-9775-8

Surkar, A., Lavania, S. C., Pandey, D. N., & Pant, M. C. (1994). Changes in the blood lipid profile after administration of Ocimum sanctum (Tulsi) leaves in the normal albino rabbits. Indian Journal of Physiology and Pharmacology, 38, 311-312.

Tallei, T. E., Tumilaar, S. G., Niode, N. J., Fatimawali, Kepel, B. J., Idroes, R., Effendi, Y., Sakib, S. A., & Emran, T. B. (2020). Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: a molecular docking study. Scientifica, 2020, 6307457. https://doi.org/10.1155/2020/6307457

Tamm, C. O. (1972). Survival and flowering of some perennial herbs. II. The behaviour of some orchids on permanent plots. Oikos, 23(1), 23-28. https://doi.org/10.2307/3543923

Tang, L. I., Ling, A. P., Koh, R. Y., Chye, S. M., &Voon, K. G. (2012). Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complementary and Alternative Medicine, 12, 3. https://doi.org/10.1186/1472-6882-12-3

Thomas, B., Mathews, R. P., Rajendran, A., & Kumar, K. P. (2013). Ethnobotanical observations on tribe Arnatans of nilambur forest, Western Ghats region of Kerala, India. Research in Plant Biology, 3(2), 12-17.

Thompson, K. D. (1998). Antiviral activity of Viracea against acyclovir susceptible and acyclovir resistant strains of herpes simplex virus. Antiviral Research, 39(1), 55-61. https://doi.org/10.1016/S0166-3542(98)00027-8

Thuy, B. T. P., My, T. T. A., Hai, N. T. T., Hieu, L. T., Hoa, T. T., Loan, H. T. P., Triet, N. T., Anh, T. T. V., Quy, P. T., Tat, P. V., Hue, N. V., Quang, D. T., Trung, N. T., Tung, V. T., Huynh, L. K., & Nhung, N. T. A. (2020). Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega, 5(14), 8312-8320. https://doi.org/10.1021/acsomega.0c00772

Tiwari, D., Upadhyay, S., & Paliwal, A. (2016). Survey of ethnomedicinal plants of Bharsar, International Journal of Agricultural Sciences, 6(6), 329-349.

Tiwari, V., Darmani, N. A., Yue, B. Y., & Shukla, D. (2010). In vitro antiviral activity of neem (Azardirachtaindica L.) bark extract against herpes simplex virus type‐1 infection. Phytotherapy Research, 24(8), 1132-1140. https://doi.org/10.1002/ptr.3085

Tsai, Y., Cole, L. L., Davis, L. E., Lockwood, S. J., Simmons, V., & Wild, G. C. (1985). Antiviral properties of garlic: in vitro effects on influenza B, herpes simplex and coxsackie viruses. Planta Medica, 51(05), 460-461. https://doi.org/10.1055/s-2007-969553

Tyrrell, D. A., & Myint, S. H. (1996). Coronaviruses. Medical Microbiology. (4th ed.). Galveston: University of Texas Medical Branch at Galveston

Ugulu, I. (2011). Traditional ethnobotanical knowledge about medicinal plants used for external therapies in Alasehir, Turkey. International Journal of Medicinal and Aromatic Plants, 1(2), 101-106.

Ul Qamar, M. T., Maryam, A., Muneer, I., Xing, F., Ashfaq, U. A., Khan, F. A., & Siddiqi, A. R. (2019). Computational screening of medicinal plant phytochemicals to discover potent pan-serotype inhibitors against dengue virus. Scientific reports, 9(1), 1-16. https://doi.org/10.1016/j.jpha.2020.03.009

Ulasli, M., Gurses, S. A., Bayraktar, R., Yumrutas, O., Oztuzcu, S., Igci, M., & Arslan, A. (2014). The effects of Nigella sativa (Ns), Anthemishyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Molecular Biology Reports, 41(3), 1703-1711. https://doi.org/10.1007/s11033-014-3019-7

Upadhyay, B., Dhaker, A. K., & Kumar, A. (2010). Ethnomedicinal and ethnopharmaco-statistical studies of Eastern Rajasthan, India. Journal of Ethnopharmacology, 129(1), 64-86. https://doi.org/10.1016/j.jep.2010.02.026

van Damme, E. J., Balzarini, J., Smeets, K., van Leuven, F., & Peumans, W. J. (1994). The monomeric and dimeric mannose-binding proteins from the Orchidaceae species Listera ovata and Epipactis helleborine: sequence homologies and differences in biological activities. Glycoconjugate Journal, 11(4), 321-332.

Varshney, A., Balkrishna, A., & Singh, J. (2020). Withanone from Withaniasomnifera May Inhibit Novel Coronavirus (COVID-19) Entry by Disrupting Interactions between Viral S-Protein Receptor Binding Domain and Host ACE2 Receptor. https://doi.org/10.21203/rs.3.rs-17806/v1

Venkateswaran, P. S., Millman, I., & Blumberg, B. S. (1987). Effects of an extract from Phyllanthus niruri on hepatitis B and woodchuck hepatitis viruses: in vitro and in vivo studies. Proceedings of the National Academy of Sciences, 84(1), 274-278. https://doi.org/10.1073/pnas.84.1.274

Vijayan, A., Liju, V. B , Reena John, J. V., Parthipan, B., & Renuka, C. (2007). Traditional remedies of Kani tribes of Kottoor reserve forest, Agasthyavanam, Thiruvananthapuram, Kerala. Indian Journal of Traditional Knowledge, 6(4), 589-594.

Vimalanathan, S., & Hudson, J. (2012). Anti-Influenza virus activities of commercial oregano oils and their carriers. Journal of Applied Pharmaceutical Science, 2(7), 214-218. https://doi.org/10.7324/JAPS.2012.2734

Wang, X. S., Dong, Q., Zuo, J. P., & Fang, J. N. (2003). Structure and potential immunological activity of a pectin from Centellaasiatica (L.) Urban. Carbohydrate Research, 338(22), 2393-2402. https://doi.org/10.1016/S0008-6215(03)00380-X

Weniger, B., Rouzier, M., Daguilh, R., Henrys, D., Henrys, J. H., & Anton, R. (1986). Traditional medicine in the Central Plateau of Haiti. 2. Ethnopharmacologic inventory. Journal of Ethnopharmacology, 17(1), 13-30. https://doi.org/10.1016/0378-8741(86)90070-x

Wiart, C., Kumar, K., Yusof, M. Y., Hamimah, H., Fauzi, Z. M., & Sulaiman, M. (2005). Antiviral properties of ent‐labdene diterpenes of Andrographis paniculatanees, inhibitors of herpes simplex virus type 1. Phytotherapy Research, 19(12), 1069-1070. https://doi.org/10.1002/ptr.1765

Wolkerstorfer, A., Kurz, H., Bachhofner, N., & Szolar, O. H. (2009). Glycyrrhizin inhibits influenza A virus uptake into the cell. Antiviral Research, 83(2), 171-178. https://doi.org/10.1016/j.antiviral.2009.04.012

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260-1263. https://doi.org/10.1126/science.abb2507

Xu, B., Wang, L., González-Molleda, L., Wang, Y., Xu, J., & Yuan, Y. (2014). Antiviral activity of (+)-rutamarin against Kaposi's sarcoma-associated herpesvirus by inhibition of the catalytic activity of human topoisomerase II. Antimicrobial Agents and Chemotherapy, 58(1), 563-573. https://doi.org/10.1128/AAC.01259-13

Yang, F., Zhang, Y., Tariq, A., Jiang, X., Ahmed, Z., Zhihao, Z., Idrees, M., Azizullah, A., Adnan, M., & Bussmann, R. W. (2020). Food as medicine: A possible preventive measure against coronavirus disease (COVID-19). Phytotherapy Research, 34(12), 3124-3136. https://doi.org/10.1002/ptr.6770

Yang, Q. Y., Tian, X. Y., & Fang, W. S. (2007). Bioactive coumarins from Boenninghauseniasessilicarpa. Journal of Asian Natural Products Research, 9(1), 59-65. https://doi.org/10.1080/10286020500382397

Yasmin, A. R., Chia, S. L., Looi, Q. H., Omar, A. R., Noordin, M. M., & Ideris, A. (2020). Herbal extracts as antiviral agents. Feed additives, 2020, 115-132. https://doi.org/10.1016/B978-0-12-814700-9.00007-8

Yousaf, T., Rafique, S., Wahid, F., Rehman, S., Nazir, A., Rafique, J., & Shah, S. M. (2018). Phytochemical profiling and antiviral activity of Ajuga bracteosa, Ajuga parviflora, Berberis lycium and Citrus lemon against Hepatitis C Virus. Microbial Pathogenesis, 118, 154-158. https://doi.org/10.1016/j.micpath.2018.03.030

Yu, Y. B. (2004). The extracts of Solanum nigrum L. for inhibitory effects on HIV-1 and its essential enzymes. Korean Journal of Oriental Medicine, 10(1), 119-126.

Zaher, K. S., Ahmed, W. M., & Zerizer, S. N. (2008). Observations on the biological effects of black cumin seed (Nigella sativa) and green tea (Camellia sinensis). Global Veterinaria, 2(4), 198-204.

Zandi, K., Ramedani, E., Mohammadi, K., Tajbakhsh, S., Deilami, I., Rastian, Z., Fouladvand, M., Yousefi, F., & Farshadpour, F. (2010). Evaluation of antiviral activities of curcumin derivatives against HSV-1 in Vero cell line. Natural Product Communications, 5(12), 1935-1938.

Zandi, K., Zadeh, M. A., Sartavi, K., & Rastian, Z. (2007). Antiviral activity of Aloe vera against herpes simplex virus type 2: an in vitro study. African Journal of Biotechnology, 6(15), 1770-1773.

Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., &Sauerhering, L. &Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409-412. https://doi.org/10.1126/science.abb3405

Zhang, X. L., Guo, Y. S., Wang, C. H., Li, G. Q., Xu, J. J., Chung, H. Y., & Wang, G. C. (2014). Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 152, 300-306. https://doi.org/10.1016/j.foodchem.2013.11.153

Zhen, H., Fang, F., Ye, D. Y., Shu, S. N., Zhou, Y. F., Dong, Y. S., & Li, G. (2006). Experimental study on the action of allitridin against human cytomegalovirus in vitro: Inhibitory effects on immediate-earlygenes. Antiviral Research, 72(1), 68-74. https://doi.org/10.1016/j.antiviral.2006.03.017

Zhu, X. M., Song, J. X., Huang, Z. Z., Wu, Y. M., & Yu, M. J. (1993). Antiviral activity of mangiferin against herpes simplex virus type 2 in vitro. Acta Pharmacologica Sinica, 14(5), 452-454.

Published

23-03-2023

How to Cite

Mishra, D., Kumar, A., Tiwari, A., Deepika, & Chaturvedi, P. (2023). Antiviral medicinal plants of India as a potential tool against COVID-19: A review with ethno scientific evidence. Journal of Medicinal Herbs and Ethnomedicine, 9, 1–17. https://doi.org/10.25081/jmhe.2023.v9.7340

Issue

Section

Articles