Ethnomedicinal and pharmacological potential of marine macroalgae for CNS disorders: An overview


  • Subhash R. Yende Gurunanak College of Pharmacy, Nagpur-440026, Maharashtra, India
  • Radha Kapgate Gurunanak College of Pharmacy, Nagpur-440026, Maharashtra, India
  • Sumit K. Arora Gurunanak College of Pharmacy, Nagpur-440026, Maharashtra, India
  • Sapan K. Shah Priyadarshini J. L. College of Pharmacy, Hingna Road, Nagpur-440016, Maharashtra, India
  • Keshav S. Moharir Gurunanak College of Pharmacy, Nagpur-440026, Maharashtra, India
  • Ankit Mishra VNS Faculty of Pharmacy, Neelbud, Bhopal-462044, Madhya Pradesh, India



Marine macroalgae, Seaweed, CNS disorder


Marine macroalgae or seaweeds have created a favourable implication in the area of biomedical sciences, due to the present of potential bioactive substances. Extensive studies are reported on neuropharmacological effects of terrestrial plants and their constituents but there is inadequate information on the potential application of marine macroalgae for behavioural and neurological disorders. This review will emphasize on recent studies and/or updates on bioactive compounds or extracts from marine macroalgae and their potential toward CNS disorders.


Download data is not yet available.


Alicino, I., Giglio, M., Manca, F., Bruno, F., & Puntillo, F. (2012). Intrathecal combination of ziconotide and morphine for refractory cancer pain: A rapidly acting and effective choice. Pain, 153(1), 245-249.

Anca, J. M., Lamela, M., Cadavid, I., & Calleja, J. M. (1990). Effects of Himanthalia elongata on the central nervous system of mice. Journal of Ethnopharmacology, 29(2), 225–231.

Bold, H. C., & Wynne, M. J. (1978). Introduction to the Algae : Structure and Reproduction. Prentice-Hall.

Cho, S., Yang, H., Jeon, Y. J., Lee, C. J., Jin, Y. H., Baek, N. I., Kim, D., Kang, S. M., Yoon, M., Yong, H., Shimizu, M., & Han, D. (2012). Phlorotannins of the edible brown seaweed Ecklonia cava Kjellman induce sleep via positive allosteric modulation of gamma-aminobutyric acid type A–benzodiazepine receptor: A novel neurological activity of seaweed polyphenols. Food Chemistry, 132(3), 1133–1142.

Cho, S., Yoon, M., Pae, A. N., Jin, Y. H., Cho, N. C., Takata, Y., Urade, Y., Kim, S., Kim, J. S., Yang, H., Kim, J., Kim, J., Han, J. K., Shimizu, M., & Huang, Z. L. (2014). Marine polyphenol phlorotannins promote non-rapid eye movement sleep in mice via the benzodiazepine site of the GABAA receptor. Psychopharmacology, 231(14), 2825–2837.

Choi, B. W., Ryu, G., Park, S. H., Kim, E. S., Shin, J., Roh, S. S., Shin, H. C., & Lee, B. H. (2007). Anticholinesterase activity of plastoquinones from Sargassum sagamianum: lead compounds for alzheimer’s disease therapy. Phytotherapy Research, 21(5), 423–426.

Choi, J. Y., Mohibbullah, M., Park, I. S., Moon, I. S., & Hong, Y. K. (2018). An ethanol extract from the phaeophyte Undaria pinnatifida improves learning and memory impairment and dendritic spine morphology in hippocampal neurons. Journal of Applied Phycology, 30(1), 129–136.

Colwell, R. R. (2002). Fulfilling the promise of biotechnology. Biotechnology Advances, 20(3), 215–228.

Dhargalkar, V. K., & Pereira, N. (2005). Seaweed : Promising Plant of the Millennium. Science and Culture, 71(3–4), 60–66.

El Gamal, A. A. (2010). Biological importance of marine algae. Saudi Pharmaceutical Journal, 18(1), 1–25.

Garson, M. J. (1989). Biosynthetic studies on marine natural products. Natural Product Reports, 6(2), 143–170.

Heo, S., Ko, S. C., Kang, S. M., Kang, H. S., Kim, J. P., Kim, S., Lee, K., Cho, M., & Jeon, Y. (2008). Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage. European Food Research and Technology, 228(1), 145–151.

Herrera-Ruiz, M., García-Beltrán, Y., Mora, S., Díaz-Véliz, G., Viana, G. S. B., Tortoriello, J., & Ramírez, G. (2006). Antidepressant and anxiolytic effects of hydroalcoholic extract from Salvia elegans. Journal of Ethnopharmacology, 107(1), 53–58.

Hu, P., Li, Z., Chen, M., Sun, Z., Ling, Y., Jiang, J., & Huang, C. (2016). Structural elucidation and protective role of a polysaccharide from Sargassum fusiforme on ameliorating learning and memory deficiencies in mice. Carbohydrate Polymers, 139, 150–158.

Ina, A., Hayashi, K. I., Nozaki, H., & Kamei, Y. (2007). Pheophytin a, a low molecular weight compound found in the marine brown alga Sargassum fulvellum, promotes the differentiation of PC12 cells. International Journal of Developmental Neuroscience, 25(1), 63–68.

Jhamandas, J. H., Wie, M. B., Harris, K., MacTavish, D., & Kar, S. (2005). Fucoidan inhibits cellular and neurotoxic effects of β-amyloid (Aβ) in rat cholinergic basal forebrain neurons. European Journal of Neuroscience, 21(10), 2649–2659.

Jin, D. Q., Lim, C. S., Sung, J. Y., Choi, H. G., Ha, I., & Han, J.-S. (2006). Ulva conglobata, a marine algae, has neuroprotective and anti-inflammatory effects in murine hippocampal and microglial cells. Neuroscience Letters, 402(1), 154–158.

Jung, W. K., Heo, S. J., Jeon, Y. J., Lee, C. M., Park, Y. M., Byun, H. G., Choi, Y. H., Park, S. G., & Choi, I. W. (2009). Inhibitory Effects and Molecular Mechanism of Dieckol Isolated from Marine Brown Alga on COX-2 and iNOS in Microglial Cells. Journal of Agricultural and Food Chemistry, 57(10), 4439–4446.

Kamat, S. Y., Wahidulla, S., D’Souza, L., Naik, C. G., Ambiye, V., Bhakuni, D. S., Jain, S., Goel, A. K., Srimal, R. C. (1994). Bioactivity of marine organisms: Part VII--Effect of seaweed extract on central nervous system. Indian Journal of Experimental Biology, 32(6), 418–422.

Kamei, Y., & Tsang, C. K. (2003). Sargaquinoic acid promotes neurite outgrowth via protein kinase A and MAP kinases-mediated signaling pathways in PC12D cells. International Journal of Developmental Neuroscience, 21(5), 255–262.

Lin, J., Huang, L., Yu, J., Xiang, S., Wang, J., Zhang, J., Yan, X., Cui, W., He, S., & Wang, Q. (2016). Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro. Marine Drugs, 14(4), 67.

Monteiro, V. S., Teles, F. B., Coura, C. O., Souza, R. B., Lima, C. N. de C., Costa, D. V. da S., Honório Junior, E. R., Escudeiro, S. de S., Chaves, E. M. C., Vasconcelos, S. M. M., & Benevídes, N. M. B. (2016). Involvement of the GABAergic system in the anxiolytic effect of sulfated polysaccharides from the red seaweed Gracilaria cornea. Journal of Applied Phycology, 28(3), 1997–2004.

Myung, C. S., Shin, H. C., Bao, H. Y., Yeo, S. J., Lee, B. H., & Kang, K. J. (2005). Improvement of Memory by Dieckol and Phlorofucofuroeckol in Ethanol-Treated Mice Possible Involvement of the Inhibition of Acetylcholinesterase. Archives of Pharmacal Research, 28(6), 691–698.

Natarajan, S., Shanmugiahthevar, K. P., & Kasi, P. D. (2009). Cholinesterase inhibitors from Sargassum and Gracilaria gracilis: Seaweeds inhabiting South Indian coastal areas (Hare Island, Gulf of Mannar). Natural Product Research, 23(4), 355–369.

Newman, D. J., Cragg, G. M., & Snader, K. M. (2000). The influence of natural products upon drug discovery. Natural Product Reports, 17(3), 215–234.

Nuñez, R., Garateix, A., Laguna, A., Fernández, M. D., Ortiz, E., Llanio, M., Valdés, O., Rodríguez, A., & Menéndez, R. (2006). Caribbean marine biodiversity as a source of new compounds of biomedical interest and others industrial applications. Pharmacologyonline, 3, 111–119.

Proksch, P., Edrada, R., & Ebel, R. (2002). Drugs from the seas – current status and microbiological implications. Applied Microbiology and Biotechnology, 59(2), 125–134.

Ryu, G., Park, S. H., Kim, E. S., Choi, B. W., Ryu, S. Y., & Lee, B. H. (2003). Cholinesterase inhibitory activity of two farnesylacetone derivatives from the brown algaSargassum sagamianum. Archives of Pharmacal Research, 26(10), 796–799.

Siddiqui, P. J. A., Khan, A., Uddin, N., Khaliq, S., Rasheed, M., Nawaz, S., Hanif, M., & Dar, A. (2017). Antidepressant-like deliverables from the sea: evidence on the efficacy of three different brown seaweeds via involvement of monoaminergic system. Bioscience, Biotechnology, and Biochemistry, 81(7), 1369–1378.

Silva, J., Alves, C., Freitas, R., Martins, A., Pinteus, S., Ribeiro, J., Gaspar, H., Alfonso, A., & Pedrosa, R. (2019). Antioxidant and Neuroprotective Potential of the Brown Seaweed Bifurcaria bifurcata in an in vitro Parkinson’s Disease Model. Marine Drugs, 17(2), 85.

Smit, A. J. (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. Journal of Applied Phycology, 16(4), 245-262.

Tsang, C. K., Ina, A., Goto, T., & Kamei, Y. (2005). Sargachromenol, a novel nerve growth factor-potentiating substance isolated from Sargassum macrocarpum, promotes neurite outgrowth and survival via distinct signaling pathways in PC12D cells. Neuroscience, 132(3), 633–643.

Vázquez-Freire, M. J., Castro, E., Lamela, M., & Calleja, J. M. (1995). Neuropharmacologial effects of Cystoseira usneoides extract. Phytotherapy Research, 9(3), 207–210.

Vázquez-Freire, M. J., Lamela, M., & Calleja, J. M. (1994). Laminaria ochroleuca: A preliminary study of its effect on the central nervous system. Phytotherapy Research, 8(7), 422–425.

Yende, S., Harle, U., & Chaugule, B. (2014). Therapeutic potential and health benefits of Sargassum species. Pharmacognosy Reviews, 8(15), 1-7.

Yende, S. R., Harle, U. N., & Ittadwar, A. M. (2016a). Anxiolytic activity of marine macroalgae Sargassum ilicifolium and Padina tetrastomatica in mice. International Journal of Pharmacy and Pharmaceutical Sciences, 8(5), 97-101.

Yende, S. R., Harle, U. N., & Ittadwar, A. M. (2016b). Insignificant anticonvulsant activity of Padina tetrastromatica (Brown macroalgae) in mice. Journal of Pharmaceutical Negative Results, 7(1), 33.

Yende, S. R., Arora, S. K., & Ittadwar, A. M. (2021). Antioxidant and Cognitive Enhancing Activities of Sargassum ilicifolium and Padina tetrastromatica in Scopolamine Treated Mice. Journal of Biologically Active Products from Nature, 11(1), 11–21.

Yende, S. R., & Harle, U. N. (2013). Antidepressant-like effect of Sargassum ilicifolium in mice model of depression. Advances in Pharmacology & Toxicology, 14(3), 7–13.

Yende, S. R., Harle, U. N., Arora, S. K., & Pande, V. B. (2018). Phytochemical screening and anticonvulsant activity of Sargassum ilicifolium (brown algae) in mice. The Journal of Phytopharmacology, 7(1), 25–28.

Yoon, M., & Cho, S. (2018). Triphlorethol A, a Dietary Polyphenol from Seaweed, Decreases Sleep Latency and Increases Non-Rapid Eye Movement Sleep in Mice. Marine Drugs, 16(5), 139.

Yoon, N. Y., Chung, H. Y., Kim, H. R., & Choi, J. S. (2008). Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fisheries Science, 74(1), 200–207.

Zhao, D., Zheng, L., Qi, L., Wang, S., Guan, L., Xia, Y., & Cai, J. (2016). Structural Features and Potent Antidepressant Effects of Total Sterols and β-sitosterol Extracted from Sargassum horneri. Marine Drugs, 14(7), 123.



How to Cite

Yende, S. R., Kapgate, R., Sumit K. Arora, Shah, S. K., Moharir, K. S., & Mishra, A. (2022). Ethnomedicinal and pharmacological potential of marine macroalgae for CNS disorders: An overview. Journal of Medicinal Herbs and Ethnomedicine, 8, 1–6.