Impact of Indoor Residual Spray (IRS) and Insecticide Treated Nets (ITNs) for sand flies (Diptera: Psychodidae) elimination in some remote communities
DOI:
https://doi.org/10.25081/jes.2024.v15.8925Keywords:
Indoor Residual Spray (IRS), Insecticide Treated Nets (ITNs), Integrated Vector Management (IVM), Coetaneous Leishmaniasis elimination, Sand fliesAbstract
Insecticide Treated Nets (ITNs) and Indoor Residual sprays (IRS) in synergy have been an effective way to drive vector transmissions to low levels. A comparison-based survey for the field efficacy of (IRS+ITN) versus single interventions, IRS or ITN alone compared with control was conducted in the Mbaise Area of Imo State Nigeria. Sticky trap (ST) and Human bait (HB) techniques were used for sandflies collection. Results from the two techniques showed that after intervention, the lowest sandflies proportion were from households that intervened with combined measures (IRS+ITN) when compared with single intervention households (IRS) and (ITN) or control. The percentage reduction (%RI) at the sites that intervened with IRS+ITN as compared to either control site or single interventions was found to be the highest. The study strongly advocates the use of integration vector management for sand fly reduction and subsequent disease transmission especially in our rural areas.
Downloads
References
Adeogun, A. O., Olojede, J. B., Oduola, A. O., & Awolola, T. S. (2012). Village-Scale Evaluation of PermaNet 3.0: an Enhanced Efficacy Combination Long-Lasting Insecticidal Net Against Resistant Populations of Anopheles gambiae s.s. Malaria Chemotherapy, Control & Elimination, 2012, 235543.
Agwale, S. M., Pam, D. D., Donji, B., & Dunh-Linska, D. D. (1995). Preliminary Survey of phlebotomine sandflies (Diptera: Psychodidae) in Northern Nigeria. Memorias do Instituto Oswaldo Cruz, 90(5), 551-558. https://doi.org/10.1590/S0074-02761995000500001
Asimeng, E. J. (1990). The distribution of phlebotomine sandflies (Diptera: Psychodidae) in northern Nigeria. Tropical Medicine & Parasitology, 41(2), 193-197.
Coleman, M., Foster, G. M., Deb, R., Pratap Singh, R., Ismail, H. M., Shivam, P., Ghosh, A. K., Dunkley, S., Kumar, V., Coleman, M., Hemingway, J., Paine, M. J. I., & Das, P. (2015). DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in India. Proceedings of the National Academy of Sciences of the United States of America, 112(28), 8573-8578. https://doi.org/10.1073/pnas.1507782112
Depaquit, J., Grandadam, M., Fouque, F., Andry, P. E., & Peyrefitte, C. (2010). Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: a review. European Communicable Disease Bulletin, 15(10), 19507. https://doi.org/10.2807/ese.15.10.19507-en
Dinesh, D. S., DAS, P., Picado, A., Davies, C., Speybroeck, N., Boelaert, M., & Coosemans, M. (2008). The efficacy of indoor CDC light traps for collecting the sandfly Phlebotomus argentipes, vector of Leishmania donovani. Medical and Veterinary Entomology, 22(2), 120-123. https://doi.org/10.1111/j.1365-2915.2008.00724.x
FMOH. (2012). Nigeria Master Plan for Neglected Tropical Disease (2013-2017). Federal Ministry of Health, Abuja.
Hamel, M. J., Otieno, P., Bayoh, N., Kariuki, S., Were, V., Marwanga, D., Laserson, K. F., Williamson, J., Slutsker, L., & Gimnig, J. (2011). The combination of indoor residual spraying and insecticide-treated nets provides added protection against malaria compared with insecticide-treated nets alone. The American Journal of Tropical Medicine and Hygiene, 85(6), 1080-1086. https://doi.org/10.4269/ajtmh.2011.10-0684
Huda, M. M., Mondal, D., Kumar, V., Das, P., Sharma, S. N., Das, M. L., Roy, L., Gurung, C. K., Banjara, M. R., Akhter, S., Maheswary, N. P., Kroeger, A., & Chowdhury, R. (2011). Toolkit for monitoring and evaluation of indoor residual spraying for visceral leishmaniasis control in the Indian subcontinent: application and results. Journal of Tropical Medicine, 2011, 876742. https://doi.org/10.1155/2011/876742
Ikpeama, C. A., & Obiajuru, I. O. C. (2018). Bionomics of Sandflies (Diptera; Psycodidae) in Some Remote Communities in Ezinihitte Mbaise, South Eastern, Nigeria. Biological Sciences, 2(1), 19-28.
Isa, A., Umar, Y. A., & Appah, J. (2017). Species Composition of Phlebotomine Sandfly (Diptera:Psychodidae)Vectors of Leishmaniasis in Katsina State, Northern Nigeria. International Journal of Scientific & Engineering Research, 8(11), 1786-1793.
Kleinschmidt, I., Schwabe, C., Shiva, M., Segura, J. L., Sima, V., Mabunda, S. J., & Coleman, M. (2009). Combining indoor residual spraying and insecticide-treated net interventions. The American Journal of Tropical Medicine and Hygiene, 81(3), 519-524.
Kumar, V., Kesari, S., Chowdhury, R., Kumar, S., Sinha, G., Hussain, S., Huda, M. M., Kroeger, A., & Das, P. (2013). User friendliness, efficiency & spray quality of stirrup pumps versus hand compression pumps for indoor residual spraying. The Indian Journal of Medical Research, 138(2), 239-243.
Kumar, V., Shankar, L., Kesari, S., Bhunia, G. S., Dinesh, D. S., Mandal, R., & Das, P. (2015). Insecticide susceptibility of Phlebotomus argentipes & assessment of vector control in two districts of West Bengal, India. The Indian Journal of Medical Research, 142(2), 211-215. https://doi.org/10.4103/0971-5916.164260
Lindsay, S. W., Shenton, F. C., Snow, R. W., & Greenwood, B. M. (1989). Responses of Anopheles gambiae complex mosquitoes to the use of untreated bednets in The Gambia. Medical and Veterinary Entomology, 3(3), 253-262. https://doi.org/10.1111/j.1365-2915.1989.tb00225.x
Moncaz, A., Faiman, R., Kirstein, O., & Warburg, A. (2012). Breeding sites of Phlcbotomus sergenti, the sand fly vector of cutaneous Leishmaniesis in the Judean Desert. Plos Neglected Tropical Diseases, 6(7), e1725. https://doi.org/10.1371/journal.pntd.0001725
Mondal, D., Chowdhury, R., Huda, M. M., Maheswary, N. P., Akther, S., Petzold, M., Kumar, V., Das, M. L., Gurung, C. K., Ghosh, D., & Kroeger, A. (2010). Insecticide-treated bed nets in rural Bangladesh: their potential role in the visceral leishmaniasis elimination programme. Tropical Medicine & International Health, 15(11), 1382-1389. https://doi.org/10.1111/j.1365-3156.2010.02635.x
Mulla, M. S., Su, T., Thavara, U., Tawatsin, A., Ngamsuk, W., & Pan-Urai, P. (1999). Efficacy of new formulations of the microbial larvicide Bacillus sphaericus against polluted water mosquitoes in Thailand. Journal of Vector, 24(1), 99-110.
Muniaraj, M. (2014). The lost hope of elimination of Kala-azar (Visceral Leishmaniasis) by and cyclic occurrence of its outbreak in India, blame falls on vector control practices or co-infection with human immunodeficiency virus or therapeutic modalities? Tropical Parasitology, 4(1), 10-19. https://doi.org/10.4103/2229-5070.129143
Nwoke, B. E. B. (1986). Studies on the field epidemiology of human Onchoerciesis in Jos, Plateau, Nigeria. Doctoral Dissertation, University of Jos.
Orshan, L., Szekely, D., Khalfa, Z., & Bitton, S. (2010). Distribution and seasonality of Phlebotomus sand flies in cutaneous leishmaniasis foci, Judean Desert, Israel. Journal of Medical Entomology, 47(3), 319-328. https://doi.org/10.1603/me09096
Rama, A., Kesari, S., Das, P., & Kumar, V. (2017). Studying DDT Susceptibility at Discriminating Time Intervals Focusing on Maximum Limit of Exposure Time Survived by DDT Resistant Phlebotomus argentipes (Diptera: Psychodidae): an Investigative Report. Japanese Journal of Infectious Diseases, 70(4), 437-441. https://doi.org/10.7883/yoken.JJID.2015.604
Singh, R. K., Mittal, P. K., & Dhiman, R. C. (2012). Insecticide susceptibility status of Phlebotomus argentipes, a vector of visceral leishmaniasis in different foci in three states of India. Journal of Vector Borne Diseases, 49(4), 254-257.
WHO. (2005). Guidelines for laboratory and field testing . of long-lasting insecticidal mosquito nets. Geneva, World Health Organization.