Green superabsorbent hydrogel derived from activated charcoal and glycerol with maleic acid as a cross-linker

Authors

  • Titus M. Kasimu Department of Pure and Applied Science, Machakos University Nairobi, Kenya
  • Harun M. Mbuvi Department of Chemistry, Kenyatta University Nairobi, Kenya
  • Francis M. Maingi Department of Science Technology and Engineering, Kibabii University Bungoma, Kenya

DOI:

https://doi.org/10.25081/jes.2024.v15.8767

Keywords:

Activated charcoal, Characterization, Crosslinking, Glycerol, Superabsorbent hydrogel

Abstract

Superabsorbent hydrogels characterize a set of polymeric materials with three-dimensional structures capable of absorbing large amounts of water due to their hydrophilic functional groups on their surface. Their application in industries, agriculture, and the environment is of primary significance. This study reports the synthesis and characterization of green superabsorbent hydrogels derived from activated charcoal. The process involved a polymerization reaction between activated charcoal (AC) with glycerol (G) using sodium hydroxide as an initiator in the absence and presence of maleic acid as a crosslinker to synthesize HCG-1 and HCG-2 superabsorbent hydrogel respectively. Characterization of the hydrogels was done using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and X-ray diffraction (XRD). Optimization conditions were done by synthesizing hydrogel with varying dosages of both activated carbon and maleic acid as well as swelling time. The FT-IR results showed the appearance of strong sharp peaks at 1591.34 cm-1 and 1400.28 cm-1 in HCG-1 associated with -COO¯ symmetric stretching and asymmetric bending vibrations, indicating interlink between reacting monomers. A new absorption band at 1639.48 cm-1 associated with -COO¯ bending in non-conjugated ester indicates ester-crosslink in HCG-2 hydrogel. XRD analysis showed a phase shift from semi-crystalline to crystalline structure upon crosslinking. SEM analysis showed a crystalline intact, rigid structure without voids and pores on its surface in HCG-1 compared to the smooth irregular pores and lamina structure observed in HCG-2 hydrogel. The dosage ratio of AC: G: maleic acid of 8:5:1 produced hydrogel with an optimal water absorption capacity of 1255.80±0.70%. Maleic acid was found to improve the water absorption capacity of the superabsorbent. The study is an eye opener towards the application of biodegradable hydrogels in agriculture, especially in semi and arid regions.

Downloads

Download data is not yet available.

References

Abedi-Koupai, J., & Sohrab, F. (2004). Effect of super absorbent application on water retention capacity and water potential in three soil textures. Journal of Science and Technology of Polymers, 17, 163- 173.

Aikawa, K., Matsumoto, K., Uda, H., Tanaka, S., Shimamura, H., Aramaki, Y., &Tsuchiya, S. (1998). Hydrogel formation of the pH response polymer polyvinylacetal diethylaminoacetate (AEA). International Journal of Pharmaceutics, 167(1-2), 97-104. https://doi.org/10.1016/S0378-5173(98)00057-X

Bouchelta, C., Medjram, M. S., Bertrand, O., & Bellat, J.-P. (2008). Preparation and characterization of activated carbon from date stones by physical activation with steam. Journal of Analytical and Applied Pyrolysis, 82(1), 70-77. https://doi.org/10.1016/j.jaap.2007.12.009

Buikliskii, V. D., Levchenko, V. F., Popov, F. A., & Sheremet, M. Y. (2012). Borohydride reduction of Ag+in aqueous poly(acrylic acid-co-acrylamide) solutions. Colloidial Journal, 74, 7-11. https://doi.org/10.1134/S1061933X12010048

Coma, V., Sebti, J., Pardon, P., Pichavant, F. H., & Descahmps, A. (2003). Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid. Carbohydrate Polymers, 51(3), 265-271. https://doi.org/10.1016/S0144-8617(02)00191-1

De Silva, P., Sagoe-Crenstil, K., & Sirivivatnanon, V. (2007). Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 37(4), 512-518. https://doi.org/10.1016/j.cemconres.2007.01.003

Farris, S., Schaich, K. M., Liu, L., Piergiovanni, L., & Yam, K. L. (2009). Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends in Food Science & Technology, 20(8), 316-332. https://doi.org/10.1016/j.tifs.2009.04.003

Ferruti, P., Bianchi, S., Ranucci, E., Chiellini, F., & Piras, A. M. (2005). Novel agmatine-containing poly (amidoamine) hydrogels as scaffolds for tissue engineering. Biomacromolecules, 6(4), 2229-2235. https://doi.org/10.1021/bm050210+

Gandini, A., Lacerda, T. M., Carvalho, A. J. F., & Trovatti, E. (2016). Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chemical Reviews, 116(3), 1637-1669. https://doi.org/10.1021/acs.chemrev.5b00264

Gao, D., Xu, H., Philbert, M., & Kopelman, R. (2007). Ultrafine hydrogel nanoparticles: synthetic approach and therapeutic application in living cells. Angewandte Chemie, 46(13), 2224-2227. https://doi.org/10.1002/anie.200603927

Guilherme, M. R., Aouada, F. A., Fajardo, A. R., Martins, A. F., Paulino, A., T. Davi, M. F. T., Rubira, A. F., & Muniz, E. C. (2015). Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. European Polymer Journal, 72, 365-385. https://doi.org/10.1016/j.eurpolymj.2015.04.017

Hajimohammadi, A., Provis, J. L., & van Deventer, J. S. J. (2011). The effect of silica availability on the mechanism of geopolymerisation. Cement and Concrete Research, 41(3), 210-216. https://doi.org/10.1016/j.cemconres.2011.02.001

Hammond, P. A., Ali, D., & Cumming, D. R. S. (2005). A system on chip digital pH meter for use in a wireless diagnostic capsule. IEEE Transactions on Biomedical Engineering, 52(4), 687-694. https://doi.org/10.1109/TBME.2005.844041

Jafari, S., & Hamid, M. (2005). A study on swelling and complex formation of acrylic acid and methacrylic acid hydrogels with polyethylene glycol. Iranian Polymer Journal, 14(10), 863-873.

Ji, H., Song, X., Shi, Z., Tang, C., Xiong, L., Zhao, W., & Zhao, C. (2018). Reinforced-Concrete Structured Hydrogel Microspheres with Ultrahigh Mechanical Strength, Restricted Water Uptake, and Superior Adsorption Capacity. ACS Sustainable Chemistry & Engineering, 6(5), 5950-5958. https://doi.org/10.1021/acssuschemeng.7b04323

Kasimu, T. M., Mbuvi, H. M., & Maingi, F. M. (2022). Evaluation of Activated Charcoal Based Hydrogels Functionalized with Maleic Acid on Growth Performance of Zea Mays in Semi-arid Regions of Kenya. International Journal of Agriculture & Environmental Science, 9(3), 69-76. https://doi.org/10.14445/23942568/IJAES-V9I3P110

Katime, I., & Mendizábal, E. (2010). Swelling Properties of New Hydrogels Based on the Dimethyl Amino Ethyl Acrylate Methyl Chloride Quaternary Salt with Acrylic Acid and 2-Methylene Butane-1,4-Dioic Acid Monomers in Aqueous Solutions. Materials Sciences and Applications, 1(3), 162-167. https://doi.org/10.4236/msa.2010.13026

Khan, M., & Lo, I. M. C. (2016). A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: Recent progress, challenges, and perspectives. Water Research, 106, 259-271. https://doi.org/10.1016/j.watres.2016.10.008

Koetting, M. C., Peters, J. T., Steichen, S. D., & Peppas, N. A. (2015). Stimulus-responsive hydrogels: Theory, modern advances, and applications. Material Science Engeering Research, 93, 1-49. https://doi.org/10.1016/j.mser.2015.04.001

Krauklis, A. E., Gagani, A. I., & Echtermeyer, A. T. (2018). Near-infrared spectroscopic method for monitoring water content in epoxy resins and fiber reinforced composite. Materials (Basel), 11(4), 586. https://doi.org/10.3390/ma11040586

Mahmoudian, M., & Ganji, F. (2017). Vancomycin-loaded HPMC micro-particles embedded within injectable thermosensitive chitosan hydrogels. Progress in Biomaterials, 6, 49-56. https://doi.org/10.1007/s40204-017-0066-x

Martens, P. J., Bryant, S. J., & Anseth, K. S. (2003). Tailoring the degradation of hydrogels formed from multivinyl poly (ethylene glycol) and poly (vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules, 4(2), 283-292. https://doi.org/10.1021/bm025666v

Meng, Y., & Ye, L. (2017). Synthesis and swelling property of superabsorbent starch grafted with acrylic acid/2-acrylamido-2-methyl-1-propanesulfonic acid. Journal of the Science of Food and Agricultural, 97(11), 3831-3840. https://doi.org/10.1002/jsfa.8247

Mohan, Y. M., Vimala, K., Thomas, V., Varaprasad, K., Sreedhar, B., Bajpai, S. K., & Raju, K. M. (2010). Controlling of silver nanoparticles structure by hydrogel networks. Journal of Colloid and Interface Science, 342(1), 73-82. https://doi.org/10.1016/j.jcis.2009.10.008

Nagahama, K., Ouchi, T., & Ohya Y. (2008). Temperature-induced hydrogels through self-assembly of cholesterol-substituted star PEG-b-PLLA copolymers: an injectable scaffold for tissue engineering. Advanced Function Materials, 18(8), 1220-1231. https://doi.org/10.1002/adfm.200700587

Nayak, S., Lee, H., Chmielewski, J., & Lyon, L. A. (2004). Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. Journal of the American Chemical Society, 126(33), 10258-10259. https://doi.org/10.1021/ja0474143

Pal, K., & Pal, S. (2006). Development of porous hydroxyapatite scaffolds. Materials and Manufacturing Processes, 21(3), 325-820. https://doi.org/10.1080/10426910500464826

Papita, S. (2010). Assessment on the removal of methylene Blue Dye using Tamarid Fruit Shell as Biosorbent. Water, Air, & Soil Pollution, 213, 287-299. https://doi.org/10.1007/s11270-010-0384-2

Senna, A. M., do Carmo, J. B., da Silva, J. M. S., & Botaro, V. R. (2015). Synthesis, characterization and application of hydrogel derived from cellulose acetate as a substrate for slow-release NPK fertilizer and water retention in soil. Journal of Environmental Chemical Engineering, 3(2), 996-1002. https://doi.org/10.1016/j.jece.2015.03.008

Sugumaran, P., Susan, V. P., Ravichandran, P., & Seshadri, S. (2012). Production and characterization of activated carbon from banana empty fruit bunch and delonix regia fruit pod. Journal of Sustainable Energy & Environment, 3, 125-132.

Viera, R. G. P., Filho, G. R., de Assuncao, R. M. N., Meireles, C. da S., Vieira, J. G., & de Oliveira, G. S. (2007). Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydrate Polymers, 67(2), 182-189. https://doi.org/10.1016/j.carbpol.2006.05.007

Vimala, K., Sivudu, K. S., Mohan, Y. M., Sreedhar, B., & Raju, K. M. (2009). Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: A rational methodology for antibacterial application. Carbohydrate.Polymer, 75(3), 463-471. https://doi.org/10.1016/j.carbpol.2008.08.009

Wingerson, R. C. (2002). Method of treating lignocellulosic biomass to produce cellulose. Fort Lupton, Colorado: PureVision Technology Inc.

Zain, G., Nada, A. A., El-Sheikh, M. A., Attaby, F. A., & Waly, A. I. (2018). Superabsorbent hydrogel based on sulfonated-starch for improving water and saline absorbency. International Journal of Biological Macromolecules, 115, 61-68. https://doi.org/10.1016/j.ijbiomac.2018.04.032

Zheng, Y., Xie, Y., & Wang, A. (2012). Rapid and wide pH-independent ammonium-nitrogen removal using a composite hydrogel with three-dimensional networks. Chemical Engineering Journal, 179, 90-98. https://doi.org/10.1016/j.cej.2011.10.064

Zhu, S., Wang, J., Yan, H., Wang, Y., Zhao, Y., Feng, B., Duan, K., & Weng, J. (2017). An injectable supramolecular self-healing bio-hydrogel with high stretchability, extensibility and ductility, and a high swelling ratio. Journal of Material Chemistry, 5(34), 7021-7034.

Published

16-02-2024

How to Cite

Kasimu, T. M., H. M. Mbuvi, and F. M. Maingi. “Green Superabsorbent Hydrogel Derived from Activated Charcoal and Glycerol With Maleic Acid As a Cross-Linker”. Journal of Experimental Sciences, vol. 15, Feb. 2024, pp. 1-7, doi:10.25081/jes.2024.v15.8767.

Issue

Section

Articles