Role of Flavonoids in Combating Hyperuricemia

Authors

  • Basavaraj Gorrjanal Division of Molecular Biology, School of Life Sciences- Mysuru, JSS Academy of Higher Education and Research, Mysuru-570015, Karnataka, India
  • B. M. Monika Division of Molecular Biology, School of Life Sciences- Mysuru, JSS Academy of Higher Education and Research, Mysuru-570015, Karnataka, India
  • R. Mythreyi Division of Molecular Biology, School of Life Sciences- Mysuru, JSS Academy of Higher Education and Research, Mysuru-570015, Karnataka, India
  • Karthikeyan Muthusamy Department of Bioinformatics, Science Campus, Alagappa University, Karaikudi-630003, Tamil Nadu, India
  • Karthikeyan Murugesan Department of Microbiology, Faculty of Medicine and Health Sciences, Quest International University, Malaysia
  • Anjuna Radhakrishnan Department of Microbiology, Faculty of Medicine and Health Sciences, Quest International University, Malaysia
  • S. Jagannathan Pasteur Institute of India, Coonoor-643103, The Nilgiris, Tamil Nadu, India
  • Boojhana Elango Department of Microbiology, Muthayammal College of Arts and Science, Rasipuram, Namakkal-637408, Tamil Nadu, India
  • Kanthesh M. Basalingappa Division of Molecular Biology, School of Life Sciences- Mysuru, JSS Academy of Higher Education and Research, Mysuru-570015, Karnataka, India
  • Maghimaa Mathanmohun Department of Microbiology, Muthayammal College of Arts and Science, Rasipuram, Namakkal-637408, Tamil Nadu, India

DOI:

https://doi.org/10.25081/imrj.2023.v13.8731

Keywords:

Hyperuricemia, Flavonoids, Xanthine oxidase, Hyperuricemic mice, Urate transporters

Abstract

Individuals tend to have an increased blood uric acid level at a younger age due to their dietary choices and lifestyle, which can lead to major health concerns such as hyperuricemia, gout, cardiovascular disease, nephropathy, and inflammation. Flavonoids have been proven to have strong inhibitory action against xanthine oxidase and be able to lower serum uric acid levels, levels of adenosine deaminase, gene expressions of renal glucose transporter type 9 (mGLUT9) and uric acid transporter 1 (mURAT1), along with increased expression of organic anion transporters (mOAT1 and mOAT3) and organic cation transporters (mOCT1 and mOCT2). Furthermore, flavonoids enhanced renal function and antioxidant activity in hyperuricemic rats. In hyperuricemic mice, genistein reduced renal fibrosis by inhibiting the JAK2/STAT3 and Wnt/β-catenin signaling pathways. Overall, this review reveals that the flavonoids have substantial anti-hyperuricemia and associated disease potential and may be utilized as natural supplements for the treatment of Uric acid-related illnesses.

Downloads

Download data is not yet available.

References

Borges, F., Fernandes, E., & Roleira, F. (2002). Progress towards the discovery of xanthine oxidase inhibitors. Current Medicinal Chemistry, 9(2), 195-217. https://doi.org/10.2174/0929867023371229

Dalbeth, N., Choi, H. K., Joosten, L. A. B., Khanna, P. P., Matsuo, H., Perez-Ruiz, F., & Stamp, L. K. (2019). Gout. Nature Reviews Disease Primers, 5, 69. https://doi.org/10.1038/s41572-019-0115-y

Dalbeth, N., Stamp, L. K., & Merriman, T. R. (2017). The genetics of gout: Towards personalised medicine? BMC Medicine, 15, 108. https://doi.org/10.1186/s12916-017-0878-5

Dwyer, J. T., & Peterson, J. (2013). J. Tea and flavonoids: Where we are, where to go next. The American Journal of Clinical Nutrition, 98(S6), 1611S-1618S. https://doi.org/10.3945/ajcn.113.059584

Fang, R., Uchiyama, R., Sakai, S., Hara, H., Tsutsui, H., Suda, T., Mitsuyama, M., Kawamura, I., & Tsuchiya, K. (2019). ASC and NLRP3 maintain innate immune homeostasis in the airway through an inflammasome-independent mechanism. Mucosal Immunology, 12, 1092-1103. https://doi.org/10.1038/s41385-019-0181-1

Feng, S., Wu, S., Xie, F., Yang, C. S., & Shao, P. (2022). Natural compounds lower uric acid levels and hyperuricemia: Molecular mechanisms and prospective. Trends in Food Science & Technology, 123, 87-102. https://doi.org/10.1016/j.tifs.2022.03.002

Ganeshpurkar, A., & Saluja, A. K. (2017). The pharmacological potential of rutin. Saudi Pharmaceutical Journal, 25(2), 149-164. https://doi.org/10.1016/j.jsps.2016.04.025

Horiuchi, H., Ota, M., Nishimura, S.-I., Kaneko, H., Kasahara, Y., Ohta, T., & Komoriya, K. (2000). Allopurinol induces renal toxicity by impairing pyrimidine metabolism in mice. Life Sciences, 66(21), 2051-2070. https://doi.org/10.1016/s0024-3205(00)00532-4

Kutryb-Zajac, B., Mierzejewska, P., Slominska, E. M., & Smolenski, R. T. (2020). Therapeutic perspectives of adenosine deaminase inhibition in cardiovascular diseases. Molecules, 25(20), 4652. https://doi.org/10.3390/molecules25204652

Liu, T., Gao, H., Zhang, Y., Wang, S., Lu, M., Dai, X., Liu, Y., Shi, H., Xu, T., Yin, J., Gao, S., Wang, L., & Zhang, D. (2022, November 21). Apigenin ameliorates hyperuricemia and renal injury through regulation of uric acid metabolism and Jak2/Stat3 signaling pathway. Pharmaceuticals, 15(11), 1442. https://doi.org/10.3390/ph15111442

Melzig, M. F. (1996). Inhibition of adenosine deaminase activity of aortic endothelial cells by selected flavonoids. Planta Medica, 62(1), 20-21. https://doi.org/10.1055/s-2006-957788

Mo, S.-F., Zhou, F., Lv, Y.-Z., Hu, Q.-H., Zhang, D.-M., & Kong, L.-D. (2007). Hypouricemic action of selected flavonoids in mice: Structure–activity relationships. Biological and Pharmaceutical Bulletin, 30(8), 1551-1556. https://doi.org/10.1248/bpb.30.1551

Nutmakul, T. (2022). A review on benefits of quercetin in hyperuricemia and gouty arthritis. Saudi Pharmaceutical Journal, 30(7), 918-926. https://doi.org/10.1016/j.jsps.2022.04.013

Omar, B., Mohamed, N., Rahim, R. A., & Wahab, H. A. (2007). Natural Flavonoids for the treatment of hyperuricemia, Molecular Docking studies. In R. Magjarevic & J. H. Nagel (Eds.), World Congress on Medical Physics and Biomedical Engineering (Vol. 14, pp. 178-182) Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-36841-0_53

Ozyel, B., Le Gall, G., Needs, P. W., & Kroon, P. A. (2021). Anti‐inflammatory effects of quercetin on high‐glucose and pro‐inflammatory cytokine challenged vascular endothelial cell metabolism. Molecular Nutrition and Food Research, 65(6), e2000777. https://doi.org/10.1002/mnfr.202000777

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41

Pavese, J. M., Farmer, R. L., & Bergan, R. C. (2010). Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Reviews, 29, 465-482. https://doi.org/10.1007/s10555-010-9238-z

Qian, X., Wang, X., Luo, J., Liu, Y., Pang, J., Zhang, H., Xu, Z., Xie, J., Jiang, X., & Ling, W. (2019). Hypouricemic and nephroprotective roles of anthocyanins in hyperuricemic mice. Food and Function, 10(2), 867-878. https://doi.org/10.1039/c8fo02124d

Rehman, K., Ali, M. B., & Akash, M. S. H. (2019). Genistein enhances the secretion of glucagon-like peptide-1 (GLP-1) via downregulation of inflammatory responses. Biomedicine & Pharmacotherapy, 112, 108670. https://doi.org/10.1016/j.biopha.2019.108670

Rundles, R. W., Metz, E. N., & Silberman, H. R. (1966). Allopurinol in the treatment of gout. Annals of Internal Medicine, 64(2), 229-258. https://doi.org/10.7326/0003-4819-64-2-229

Shibata, T., Nakashima, F., Honda, K., Lu, Y.-J., Kondo, T., Ushida, Y., Aizawa, K., Suganuma, H., Oe, S., Tanaka, H., Takahashi, T., & Uchida, K. (2014). Toll-like receptors as a target of food-derived anti-inflammatory compounds. Journal of Biological Chemistry, 289(47), 32757-32772. https://doi.org/10.1074/jbc.M114.585901

Wang, Z., Hu, W., Lu, C., Ma, Z., Jiang, S., Gu, C., Acuña-Castroviejo, D., & Yang, Y. (2018). Targeting NLRP3 (nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3) inflammasome in cardiovascular disorders. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 2765-2779. https://doi.org/10.1161/ATVBAHA.118.311916

Wei-Yun, B., & Cailin, Z. (2021). Genistein ameliorates hyperuricemia-associated nephropathy in hyperuricemic mice. Food and Agricultural Immunology, 32(1), 778-797. https://doi.org/10.1080/09540105.2021.1996540

Wu, D., Chen, R., Zhang, W., Lai, X., Sun, L., Li, Q., Zhang, Z., Cao, J., Wen, S., Lai, Z., Li, Z., Cao, F., & Sun, S. (2022). Tea and its components reduce the production of uric acid by inhibiting xanthine oxidase. Food & Nutrition Research, 66. https://doi.org/10.29219/fnr.v66.8239

Wu, H., Wang, Y., Huang, J., Li, Y., Lin, Z., & Zhang, B. (2023). Rutin ameliorates gout via reducing XOD activity, inhibiting ROS production and NLRP3 inflammasome activation in quail. Biomedicine and Pharmacotherapy, 158, 114175. https://doi.org/10.1016/j.biopha.2022.114175

Published

30-12-2023

How to Cite

Gorrjanal, B., B. M. Monika, R. Mythreyi, K. Muthusamy, K. Murugesan, A. Radhakrishnan, S. Jagannathan, B. Elango, K. M. Basalingappa, and M. Mathanmohun. “Role of Flavonoids in Combating Hyperuricemia”. International Multidisciplinary Research Journal, vol. 13, Dec. 2023, pp. 25-31, doi:10.25081/imrj.2023.v13.8731.

Issue

Section

Articles