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Abstract  
In Kaehlerian space of real dimension n a semi-symmetric F-connection was introduce by S.S.Pujar[2] about one decade ago. 
Using this affine F-connection we obtain some global results. The main purpose of the paper is to establish that a conformally 
flat real Kaehlerian manifold is W-flat if and only if the curvature tensor of the metric semi-symmetric F-connection vanishes.  
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INTRODUCTION 
 
     Let M be the Kaehlerian manifold of real dimension n ≥4 
(n=2m, m ≥1), with structure tensors (g, F), where g is Riemannian 
metric and F is a skew symmetric tensor field of type (1,1), called 
structure tensor on M, satisfying   
 

G(F(X),F(Y)) = g(X,Y), ( FX∇ )(Y) = 0, 
F2(X) = - X and F(X,Y) = - F(Y,X). 
 
Previous author [2] define an affine connection on M induced by a 

smooth function ρ on M by 

)()(
*

XYFYY XX ω+∇=∇                         (1.1) 

where X and Y are any vector fields on M, ρω d=  is the 1-form 

associated with the vector field ρD  and we call such an affine 
connection as a metric semi-symmetric F-connection.  
The author [2] proved the following Theorem 
 
Theorem A[2]. In order for an n-dimensional real Kaehlerian 
manifold M, n ≥ 4 to be conformally flat, it is necessary and sufficient 
that curvature tensor of the metric semi-symmetric F-connection 
vanishes. 
 
Theorem B[1]. If a real Kaehlerian manifold is conformally flat, it is 
of zero curvature. 
The purpose of the paper is to prove the following theorems: 
 
Theorem1.1. If, in a Kaehlerian manifold M of dimension n ≥ 4 
(n=2m, m ≥1) there exists a smooth function ρ such that the metric 
semi-symmetric F-connection(1.1) is of zero curvature, then manifold 
M is of zero curvature and hence the W-curvature tensor of the 
manifold vanishes. 
Theorem1.2. If, in a Kaehlerian manifold M of dimension n ≥ 4 

(n=2m, m ≥ 1) there exists a smooth function 
ρ
such that the 

metric semi-symmetric F-connection(1.1) is of zero curvature, then 
manifold M is of zero curvature and hence the concircular curvature 
tensor of the manifold vanishes. 
Theorem1.3. If, in a Kaehlerian manifold M of dimension n ≥ 4 

(n=2m, m ≥ 1) there exists a smooth function 
ρ
such that the 

metric semi-symmetric F-connection(1.1) is of zero curvature, then 
manifold M is of zero curvature and hence the U-curvature tensor of 
the manifold vanishes. 
 
Theorem1.4. If, in a Kaehlerian manifold M of dimension n ≥ 4 

(n=2m, m ≥ 1) there exists a smooth function 
ρ
such that the 

metric semi-symmetric F-connection(1.1) is of zero curvature, then 
manifold M is of zero curvature and hence the holomorphically 
projective(H-projective) curvature tensor of the manifold vanishes. 
 
Theorem 1.5. A conformally flat real Kaehlerian manifold is W-flat if 
and only if the curvature tensor of the metric semi-symmetric F-
connection vanishes. 
 
Notations: 
 
Let xi, i=1,2,3,….n be the local coordinates in the neighborhood of 

the point x of M. Let 
i
jF , jig  be the components of the complex 

structure tensor F and the covariant component of the metric tensor 

g respectively. Let 








i

h

j denote the Christoffel symbols formed by g 

which are the components of the connection 
∇
. Then g and F are 

related by   
          

jits
s

i
t
j ggFF =

 or ji
s

ijs gFF = , 0=∇ h
ij F     (2.1) 

ijji FF −= and
h
j

t
j

h
t FF δ−=                   (2.2) 

 

where 
t
jtiji FgF =  and the indices h,j,i,… etc taking on the values 

over the range 1,2,3,…n and in this paper the Einstein summation 
conventions are used over the repeated suffixes to avoid numerous 
summation signs. The lowering and raising of a tensor are done 
using gji and gji which are covariant and contravariant components of 

g, respectively. Let 
ρ
 be a smooth function on M. Let ρD  be 
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the vector field on M associated with the closed 1-form ρω d= . 

The local components of ρd  are denoted by 
iii

x∂

∂
=∇=

ρ
ρρ  and 

that of ρD  by j
jii

g ρρ = .  
     We now introduce an affine connection on M. An affine 

connection 

*

∇  on M whose components are denoted by 

∗

Γ h
ji , is 

defined by  

)()( XYFYY XX ω+∇=∇
∗

 
 
or local coordinates 
 

j
h

ii

h

j

h
ji F ρ+









=Γ
∗

                             (2.3) 

 

     We proceed here after with the tensor notations for the sake 
of convenience. Since the affine connection (2.3) satisfies torsion T 
with local components given by  
 

i
h
jj

h
i

h
jiT ρδρδ −=                              (2.4) 

 

Further, 
 

0
*

=∇ jik g                                    (2.5) 
 

0
*

=∇ i
jk F                                     (2.6) 

 

the affine connection  (2.3) is semi-symmetric by (2.4), metric by 
(2.5) and F is invariant by (2.6) also. We call such a connection a 
metric semi-symmetric F-connection. 

Let, 
h

kjiK , jiK and K respectively denote the components of 
curvature tensor, Ricci tensor R, and the scalar curvature of M with 

respective to 
∇
respectively. If  

∗
h

kjiK , 

∗

jiK  and 

∗

K  denote the 

components of curvature tensor, Ricci tensor 

∗

R , and the scalar 

curvature of M with respective to 

*

∇ respectively, then using (2.1) 
and (2.2), we have 
 

h

kji

h
kji KK =

∗

                                 (2.7) 
 

since  
 

0=∂−∂ jiij ρρ . 
 
On M we define curvature tensor [9], [10] of type (1,3) with 

components 
h

kjiK by 
 

)                          

(
)1(4

h
ikjki

h
jji

h
k

ki
h
jji

h
k

h

kji

FFFFFF

gg
nn

K
K

−−+

−
+

= δδ
           (2.8)  

                                                                        
 

deviation tensor G[3],[4],[10] of type (0,2) with components Gji by
 

jijiji g
n

K
KG

2
−=

,                             (2.9) 

concircular tensor Z [5], [9], [10] of type (1,3) with components
h

kjiZ  

by 

)2                     

(
)1(4

h
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h
jji

h
k

ki
h
jji

h
k

h

kji

h

kji

FFFFFF

gg
nn

K
KZ

−−+

−
+

−= δδ
,            (2.10)                                   

W- tensor [3] of type (1,3) with components
h

kjiW  by 
 

)(                      

)(

2

1

h
jki

h
kji

kj
h
iji

h
k

h

kji

h

kji

GgGgb

GGbaZW

−+

−+= δδ

,            (2.11)                            

H-projective tensor P [3],[5],[9] of type (1,3) with components
h

kjiP   
by 

)                   

                   

(
)1(2

1

h
i

t
kjt

h
i

t
jkt

t
ikt

h
j

t
ijt

h
k

ki
h
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h
k

h

kji

h

kji

FFKFFK

FKFFKF

KK
n
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−+

+−

−
+

−= δδ

,              (2.12)                             

U-tensor [4],[6],[7] of type (1,3) with components 
h

kjiU  by 
 

)(                     

)(

2

1

h
jki

h
kji

kj
h
iji

h
k

h

kji

h

kji

GgGgd

GGdcPU

−+

−+= δδ

,              (2.13)                             

and the Weyl Conformal curvature tensor C [8] of type (1,3) with 

components
h

kjiC
by 

 

ki
h
jji

h
kki

h
jji

h
k

h

kji

h

kji ggCCKC δδδδ −+−+=                                       
                                           (2.14) 

where  

jijiji Kg
nn

K
n

C
)2)(1(2

1

2

1

−−
+

−
−= . 

If 0=
h

kjiC , then M is conformally flat. 

If 0=
h

kjiW , then M is W-flat. 
 
Lemma 2.1: If, in a Kaehlerian manifold M of dimension n (n=2m, m 

≥ 1), there exists a smooth function 
ρ
such that it induces the 

metric semi-symmetric F-connection(1.1),then the curvature tensor 
of the manifold is identically to the curvature tensor of metric semi-
symmetric F-connection. 
 

Proof: Follows from (2.7). 
Proof of Theorems:  
 
     From Lemma 2.1 and the condition stated in the Theorem 1.1 
to Theorem 1.4, it follows that 

0=
∗

h
kjiK

,
0=

∗

jiK
,

0=
∗

K
                       (2.15)                          

so that  

0=
h

kjiK
,

0=jiK
,

0=K
                       (2.16) 

 

Proof of Theorem1.1: Follows from (2.16) and (2.11). 
Proof of Theorem1.2: Follows from (2.16) and (2.10). 
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Proof of Theorem1.3: Follows from (2.16) and (2.13). 
Proof of Theorem1.4: Follows from (2.16) and (2.12). 
Proof of Theorem1.5: From Lemma2.1, (2.10), (2.11) and the 
condition stated in the  Theorem 1.5, it follows that 
 

0=
h

kjiW  
 

which shows that M is W-flat. 
 
     On the other hand, if M is conformally and W-flat, then from 
Theorem B, it follows that  

0=
h

kjiK  

which, in view of  (2.7), shows that 
0=

∗
h

kjiK
. 

Thus the proof of Theorem1.5 completes. 
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