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Abstract
The purpose of this paper is to introduce a new concept such as weakly concircular ¢- symmetric € -Trans-Sasakian manifold,
and study its properties. A series of corollaries from the theorems are also obtained and a concrete example for the existence

of such manifolds is provided.
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INTRODUCTION

In Mathematics, a weakly symmetric space is a notion
introduced by the Norwegian Mathematician Atle Selberg in the
1950s as a generalization of a symmetric space, due to Elie Cartan.
Geometrically the spaces are defined as complete Riemannian
manifolds such that any two points can be exchanged by an isometry,
the symmetric case being when the isometry is required to have
period two. The classification of weakly symmetric spaces relies on
that of periodic automorphism of complex bi semi simple Lie
algebras.

In 2011, Shyamal Kumar Hui has studied the weak
concircular Symmetries of trans-Sasakian manifolds. In 1989
Tamassy and Binh [9] have introduced the notion of Weakly
Symmetric manifolds. In 1999 De and Bandyopadhyay [3] studied
Weakly Symmetric manifolds and introduced following definition:

Definition 1.1: A non flat Riemannian manifold (Mn, g) (n>2) is called
a weakly symmetric manifold if its curvature tensor R of type (0, 4)
satisfies the condition

VxR)(Y,Z,U,V)=AX)R(Y,Z,U,V)+B(Y)X,Z,U,V)
+B(Z)R(Y,X,U,V)+D(U)R(Y,Z,X,V)
+D(V)R(Y,Z,U,X) (1.1)

for all vector fields X, Y, Z, U, V€ X(M");x(M) being the
Lie algebra of smooth vector fields of M, where A,B, and D are 1-
forms and V denotes the operator of covariant differentiation with
respect to the Riemannian metric g. The 1-forms are called the
associated 1-forms of the manifold and an n-dimensional manifold of
this kind is denoted by (WS)n

A transformation of an n-dimensional Riemannian manifold M,
which transforms every geodesic circle of M into a geodesic circle, is
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called a concircular transformation [11]. The interesting invariant of a

concircular transformation is the concircular curvature tensorC,

which is defined by [11]

T

C(Y,Z,U,V)=R(Y,Z,U,V) - [g(Z,U)g(Y,V)—g(Y,U)g(Z,V)] (1 2)

n(n—1)
where r is the scalar curvature of the manifold.

Letfeisi=12, e '} be an orthonormal basis of the tangent
space at each point of the manifold and let

P(Y,V)= ié(y,ei,ei,\/) ,
i=I

Then from (1.2), we get

P(Y,V) =S(Y,V)—ig(Y,V). (1.3)

The tensor P is called the concircular Ricci symmetric tensor
[4], which is a symmetric tensor of type (0, 2).

In 2009, Shaikh and Hui [7] have introduced the following
definition:

Definition 1.2: A Riemannian manifold (M, g) (n>2) is called weakly
concircular symmetric manifold if its concircular curvature tensor

C ,of type (0, 4) is not identically zero and satisfies the condition

(VxOX(Y,Z,U,V) = AX)C(Y,Z, U, V) +B(Y)C(X, Z, U, V)
+B(Z)C(Y,X,U,V)+D(U)C(Y,Z, X, V)

+D(V)C(Y.Z,U.X) (1.4)
where A, B, D are 1-forms an n-dimensional manifold of this kind is

denoted by (WCS)n

In [13], A.Bejancu and K. L. Duggal introduced the notion of
€ -Sasakian manifolds with indefinite metric. In 1998, Xu Xufeng and
Chao Xiaoli proved that every e-Sasakian manifold is a hyper
surface of an indefinite Kaehlerian manifold and established a
necessary and sufficient condition for an odd dimensional
Riemannian manifold to be an -Sasakian manifolds [14].In [15], U.
C. De and Avijit Sarkar introduced and studied the notion of -
Kenmotsu manifolds with indefinite metric giving an example.

The purpose of this paper is to introduce a new concept such
as weakly concircular ¢-symmetric e -Trans-Sasakian manifold, and
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study its some properties. Section 2 is devoted to the preliminary
results of € -Trans-Sasakian manifolds that are needed in the rest of
the sections. Recently S. K. Hui [12] studied weak concircular
Symmetries of Trans-Sasakian manifolds. However, in section 3 of
the paper new definition for weakly concircular ¢- symmetric -
Trans-Sasakian manifold and properties of these manifolds are also
studied. In section 4 we have provide a concrete example for the
existence of weakly concircular ¢- symmetric e-Trans-Sasakian
manifold.

Preliminaries

In this section, we list the basic definitions and known results
of e -Trans-Sasakian manifolds.

Definition 2.1. [16] A (2n+1)-dimensional differentiable manifold
(M, g) is said to be an € -almost contact metric manifold, if it admits a
(1, 1) tensor field ¢, a structure vector field & a 1-form 1 an
indefinite metric g such that

0% =-I+n®ENE) =1, (2.1)
g2(§,8) =e,n(X) =€ g(X,§) (2.2)
2(0X,0Y) = g(X, Y)-e n()n(Y) 23)

for all vector fields X,Y on M, where e is 1 or -1 according as & is
space like or time like and rank ¢ is 2n.
From the above equations, one can deduce that

05 =0,n(0X)=0

Definition 2.2 An -almost contact metric manifold is called an e-
Trans-Sasakian manifold if

(VA0)Y = 02X, V)= n(Y)X}+Ble(@X, Y)e-e n(V)0X}, (24)

for any X, Y on M, where V is Live-Civita connection with respect to
g.

We note that if =1, i.e. structure vector field & is space like,
and then an e-Trans —Sasakian manifold is usual trans-Sasakian
manifold [5].

A Trans-Sasakian manifold of type (0, 0), (0,8), (o, 0) are the
cosympletic, B-Kenmotsu and a-Sasakian manifolds respectively. In
particular if a=1,3=0, and a=0,3=1, then trans-Sasakian manifold
reduces to Sasakian and Kenmotsu manifolds respectively.

For e-Trans —Sasakian manifold, we have [17]

(VxE) =€ (~odX +BX -N(X)E) (25)

(VXY =—ag©@X,Y) +Bg(X. Y)-e n(Xm(Y)} (26)

R(X, V)& = (a —=BH{M(Y)X -N(X) Y} +2aB{n(Y)oX -n(X)0Y}
+& {(Y)OX - (Xa)oY +(YB)0*X - (XB)o° Y} 2.7)

NR(X,Y)Z) =€ (o ~B*){2(Y,ZmX) - (X, Z(Y)}

Khairnar and Gaikwad

+2e af{n(X)g(9Y.Z)-n(Y)g(9X,Z2)}

H(XB)2(0%Y,2) - (YP)2(°X, Z)} +{ (X)g(9Y,Z) — (Yu)g(¢X. Z)}
(2.8)

S(X.&) ={2n(o® -B*)-e (EB)N(X)—€ (9X)o—€ (2n—1)(XB) (2.9)

R(EX)E = (o —B7—e (EB)} =X +(X)E) ~{(20B+e (£} (0X) (2 1)
S(E.&) =2n{a’ -p*~< (B)} (2.11)

20+€ (Ea)=0 (2.12)
where R is the curvature tensor of type (1, 3) of the manifold and S is
Ricci tensor.

Weakly Concircular ¢ symmetric e -Trans-Sasakian manifolds

The notion of a weakly symmetric manifold was introduced by
L. Tamassy and T. Q. Binh. Such a manifold have been studied by T.
Q. Binh, M, Prvanovic and U. C. De and S. Bandyopadhyay.

Definition 3.1: A non-flat Riemannian manifold (Mn, g) (n>2) is
called weakly symmetric if its curvature tensor R satisfies the
condition

(VxR)(Y,Z)W = A(X)R(Y,Z)W +B(Y)R(X,Z)W +C(Z)R (Y, X)W
+D(W)R(Y,Z2)X +g(R(Y,Z)W, X)p, (3.1)

where V denotes the Levi-Civita connection on (M0, g) and A,
B, C, D and p are 1-forms and a vector fields respectively which are
non zero simultaneously, and manifold is called weakly concircular

symmetric if the concircular curvature tensor Cgiven by (1.2)
satisfies the relation (3.1).Such manifolds has been denoted by

(WS),and(WCS)n- |n 1999 De and Bandyopadhyay proved the
existence of a weakly symmetric manifold by an example. It was
proved in 1995 by M Prvnovic that 1-forms and vector field must be
related as follows

B(X)=C(X)=D(X), 9a(X, p)=D(X), VX, That is the weakly symmetric
manifold is characterized by the condition

(VxR)(Y,Z)W = A(X)R(Y,Z)W + D(Y)R(X,Z)W + D(Z)R(Y, X)W
+D(W)R(Y,Z)X +g(R(Y,Z)W,X)p, (32)

g(X, p)=D(X), for all X.
The 1-forms A and D are the first and the second associated
1-forms respectively and manifold is called weakly concircular

symmetric if the concircular curvature tensor Cgiven by (1.2)
satisfies the relation (3.2).
In this paper we have introduced the following definition:

Definition 3.2: A non-flat Riemannian manifold (Mn, g) is called
weakly concircular ¢-symmetric if its concircular curvature tensor

Cof type (1, 3) satisfies the condition:

0> (VxO)(Y,Z)W = AX)C(Y,Z)W +D(Y)C(X, Z)W +D(Z)C(Y, X)W
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+D(W)C(Y,Z2)X +C(Y,Z, W, X)p (3.3)

for all vector fields X, Y, Z, W €xM"):xM) and A D are
associated 1-forms of the manifold and, € (Y, Z, W, X)=g(€ (Y, Z)W,
X).

By observing definition 3.1, it is quite natural to think that this
definition may be extended to € -Trans-Sasakian manifolds. Thus we
have the following definition.

. agr . . (M2n+1 ) .
Definition 3.3: A e-Trans-Sasakian manifold &) (n>1) is
said to be weakly concircular ¢ symmetric if its curvature tensor

€ satisfies the condition (3.3).

Lemma 3.1: If a weakly concircular -Trans-Sasakian manifold
(M2n+1

-8) (n>1) is ¢-symmetric, then the relation
n*(2B(E)+e E(ER) —201(E) 1€ dr(©)

2
HEe (o~ &)-B)-e

(3.4)
holds.

Proof: Operating by g on both sides of (3.3) and substituting for
in (3.3),

2l0?(V,E(Y,2)W, U} = AX)g(C(Y,Z)W, U) + D(Y)g(C(X, Z)W, U)
+D(2)g(C(Y. X)W, U) + D(W)g(C(Y. Z)X, U) +D(U)g(C(Y, Z)W, X) (3.5)

By virtue of (2.1), relation (3.5) can be expressed as
-g{(VxOXY, 2)W, U} +n{(V,C(Y,Z)W}g(U,E)
= AX)g(C(Y,Z)W,U)+D(Y)g(C(X,Z)W, U)

+D(Z)g(C(Y, X)W, U)+D(W)g(C(Y,Z)X, U)
+D(W)g(C(Y. Z)W.X) (3.6)

If € is orthogonal to U then 1(U) =0=g (U,£).

Setting Y=U="Ci fori= 1, 2, 3....2n+1, where { i} are orthonormal
basis of the tangent space at each point P of the manifold and taking
the sum from i=1 to i=2n+1 it is easy to see that the relation (3.6)
reduces to

—(VxSN(Z,W)+——= ( )

g(Z,W)

=AX)IS(Z,W) —Hg(Z, W)+ D(Z)[S(X, W) —ig(X, Wl

+D(W)[S(Z, X) -~ g(Z,X)]+ D(R(X,Z)W) + D(R(X, W)Z)
n

- (nr_ 1 [2D(X)g(Z, W) ~D(Z)g(X. W)~ D(W)g(X. 2)] 3.7

where S is the Ricci curvature tensor of the type (0, 2). Putting
X=Z=W=E in (3.7), we get

~(VESIE, &)+dr@

g(&.6)
=A@©)ISE.&)~ o g(ﬁf;)] +D(E)[SE.E) —ig(?;, &)l
+DE)[SE.E) —ig(é,&.ﬂ +D(R(E.£)E)+ D(R(E,E)E) (3.8)

Now substituting for g(&, &), R(E, &), and S(E, &), from
(2.2), (2.10), and (2.11) respectively in (3.8), and after simplification

the result (3.4) of the theorem 3.1 follows. This completes the proof
of the theorem.

Remark: for weakly concircular ¢ symmetric e-Trans-Sasakian
manifold of type (1, 0) and (0, 1) (i.e. weakly concircular ¢ symmetric
Sasakian and Kenmotsu manifolds), it is easy to see from (3.4) of
Theorem 3.1 that

A(€)+2D(E) = dr@

Theorem 3.2: If a weakly concircular e-Trans-Sasakian manifold

M*™L2) (151) s o-symmetric, then the associated 1-from D is
given by
[2n{2B(EP) —20uE) }+€ é(‘:ﬁ)'*‘ ]n(W)
e(n 2)r
-D

dr(®)

D(W)=
(n-1[o? [5 € EPI-
(2n-1e W(ER)+e (¢W)(§0€)

@n-Dla®-p*—e Ep)I- E(“ 21;r

(@n-1)@?-B?)- (“ 2”

}T](W) € 2n-D(WP)-€ (6W)a

+DE)[ ]

€ (n 2)r
-D

(n-1[a? Bz—e EP)I-

n(2BER)+ < EEP) — 20(E00)) + Edr@

[2n{a® —B*—€ (EP)) ——1[<2n Do —Bz—e@)

€ (n 2r
-1

]

[{2n(0® —B%)—e (&B)—i}n(W)—e (2n—1)(WB)—€ (0W)atl.

(3.9)
for any vector field W.

Proof: Taking X=Z=§ in (3.7), we get

dr(&)

~(VeS)HE W)+ g(E, W)
=A(&)[S(Q,W)—;g(i,W)HD(&)[S(Q,W)—ig(é, Wl

+D(W)IS(E.&) - i gE€.OI+DR(E, W) +D(R(E,W)J)

[DE)g(E W)~ D(W)g(&,&)] (3.10)

.
n(n-1)

now substituting for g(&, W
(2.11) respectively in (3.1

R(E, W)E, S(E, &), from (2.2), (2.10) and
) we get

dr(ﬁ)

=(VeS)(E W) +—=n(W)

=(A@©)+DE)ISE W) —an(w)]

€ (n—-2)r
n(n—1)

+D(W)[(2n—1){o® —B>—e (EB)) - ]
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ol (EB) - -

from (2.9), we have

T
o MVIDE) (3.11)

(VES)E W) =VS(E W) =S(VeE, W) =S(E, Ve W)
= VeS(E, W) -S(E.VEW)

=[2n{20(Ea) - 2B(EP) }-< EERIM(W)
—(2n-De W(EP)—€ (0W)(Ea) ’ (3.12)

Substituting (3.12) in (3.11), we get

dr(®)

[2n{2B(EP) - 2au(Eo0) }+€ §(§5)+ ]n(W)+€{(¢W)(§0t)+(2n HW(ER)}

= <A<&)+D<§))[S<&,W>—in<wn

€ (n-2)r

2 -
pe @0y

+D(W)[(2n-D{a

]

+o?—e (&) —p* -

T
- l)m(W)D(E..) (3.13)

Now by using (2.9), and substituting for A(E)+2D(E) from (3.4)
in (3.13), and  after simplifying for D(W), this completes the proof of
the Theorem 3.2.

Theorem 3.3: If a weakly concircular e-Trans-Sasakian manifold
2n+1
(M™%, g) (n>1) is ¢-symmetric, then the associated 1-from A and
D, the following relation
A(X)+2D(X) = 2n[2B(XP)+e X(EP) —2a(X )]
[2n(o*~< ()~ -7

+ 20M(X) (&) +(2n - HEOX)P - (Xo)]

er

[2n(0’~e (§B>—132>——]

2B[<¢X>°°+<2n—1>{><ﬁ—<&ﬁm<xm—#

[2n(c2-e EP)-p2) -1

2A20(2BER) — 20(E) 1+ EER)+ T dr@ “nex)

+

[2n(a’-€ (&B)-B* )_T]

L 2A2n-De X(EP)+e ©X)Ea]
[2n(0%-¢ (&B)—Bz)—%

2[2n(2B(EP)+e §(ER) 20w} +£©]

[2n(c?-e EB) B3 -

Khairnar and Gaikwad

[(2n(a” -B)-e (&B)—i}n(X)—e 2n-1)(XB)-€ (0X)al (3.14)
holds.
Proof: Substituting Z=W=¢ in (3.7), we get

(X)

—(VxS)(E.8)+ 8.

=A(&[%&)—ig(éé)]+2D(§)[S(X,§>—§g(x,é>]

+2D(R(X,8)8) -

——[2D(X)gE.5) - 2DEX.E]  (3.15)
n(n—1)

Now substituting for g(&,&), S(&, &),
(2.10) respectively in (3.15), we get

R(X, £)E, from (2.2), (2.11), and

€ dr(X)

—(VxS)(E.+

=[2n{a? -B>—e EP)} —%}A(X)

er

+2D(X)[o oD

2 (Ep)-B* -

+2DE)[{(2n )02 - B%—%r}nm—e {(@X)a+(2n-1)(XP)1 (3.16)

n—1)
Now we have

(VxS)(E.8)=VxS(E &) -2S(VxE.©),
which yields by using (2.5) and (2.11) that
(Vx9)(E,8) =2n{2a(Xa) - 2B(XP)—€ X(EP)}

+20[(Xo) —M(X)(Ea) — (2n —1)(0X)B]

+2B[(OX)0+ (2n =D {XB - (EBM(X))] (3.47)
DE(2n =10 %) - ==rin(X)-e (@X)o+ 2n = D(XB)
2
= DOOIn e’ B &)~ ]
dr(&)

—[2n{2B(EP) - 2auEo) }+€ EEP) +—=>M(X)

—[e 2n-DX(EP)+e (9X)(Ea)]

2n{2B(EB)+e EEP) —2a(Ea}+ SIS dr@

[2n{o® —p*-e (‘P;ﬁ)}—?]

+

[{2n(a” —B*)-e€ (&B)—i}n(X)—e @n-D(XB)-€ (9X)al.  (3.18)
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Using (3.17) and (3.18) in (3.16) and after simplifying, we get
(3.14). This completes the proof of Theorem 3.3.
In particular if, dgradoi=gradp, then,

&B=g (&, gradp)

=9 (S, ¢gradoy)

=n(¢grado)

=0

Substituting this value of &B in (3.14)

A(X) +2D(X) _ 2n[2B(XP) —20(X )]
2n(e?-pH-h
+20L[11(X)(§0€)+(2n 1)(¢X)ﬁ (Xa)]
[2n(0? -p2) -1

2@ n-DXB)1- Edr(x) (X(E,,(X)}+dr(§)]n(X)
+
[2n(a? -p%) -5 [2n(0 —p2)-51)
c dr(é)

2[e (0X)Ea] 24n{-ouEo)}+——>

[2n(a’ —[32)—%] ) [2n(a” —52)——

+

[{2n(a? B) MX)—e 2n-1)(XP)—-e (9X)a] (3.19)

Corollary 3.1: If a weakly concircular €-Trans-Sasakian manifold

M>M*g) (n>1) is ¢-symmetric, satisfies the condition
dgrado=grad, then the relation (3.19) holds.
If B =0 and o=1, then (3.19) yields.

A(X)+2D(X) +— (;r(x) =0 (3.20)
2n—€er
Corollary 3.2: If a weakly concircular -Sasakian manifold

2n+1
M7, ) (n>1) is ¢p-symmetric, then the relation (3.20) holds.

Corollary 3.3: If a weakly concircular e-o-Sasakian manifold

2
M) (n>1) is ¢-symmetric, then the relation

2n[20(Xo)] 20MX)Em) - (X

A(X) +2D(X) =
2n(a?)-5 [2n(a2)—g]
n
dr(X
- fl( b o 2oc<&oc)}+dr(§)]n(><)
[2n(a2)- S5 [2n(a) -5
n n

22n{-20uE)} + %r@]

| 2e @X)%0]
[2n(0?) -1
n

[2n(a?)- =57
n

2,_ I _
[{2n(a”) en}n(X) € (0X)a] (3.21)
holds.

Proof: For the weakly concircular -Trans-Sasakian manifold

2n+1
M7, g) (n>1) is ¢-symmetric of type (o, 0) i.e.; for a-Sasakian
manifold, 3=0 and o#0 so that (3.19) after simplification yields (3.21),
hence the proof of corollary 3.3 completes.

Corollary 3.4 If a weakly concircular e-B-Kenmotsu manifold

2n+1
(M™.8) (n>1) is ¢-symmetric, then the relation

2n[2B(XP)]
[2n(-B*)- ="
_edr(X) dr(é)
n

A(X) +2D(X) =

2BI((2n =D{XPB}] —IX)

+
er

[2n<—B2)—% [2n<—B2 _Sr

2[6 dr(&)

]

erg

[{2n(-B%) ———IN(X)—€ (2n —1)(XP)]
[2n(-B2)— =t

(3.22)
holds.

Proof: For the weakly concircular -Trans-Sasakian manifold

M g) (n>1) is ¢-symmetric of type (0,B) i.e.; for B-Kenmotsu
manifold, B#0, and a=0 so that (3.19) after simplification yields
(3.22), hence the proof of Corollary 3.4 completes.

If B =1 and =0, then (3.19) yields.

€ dr(X)
=0 3.23
2nl+er ( )

A(X)+2D(X) -

Corollary 3.2 If a weakly concircular -Kenmotsu manifold
MM g) (n>1) is ¢-symmetric, then the relation (3.23) holds.

Example for Weakly Concircular ¢ symmetric e-Trans-Sasakian
manifolds

Example 4.1: Let us consider a 3-dimensional manifold M={(x, v,

3 3
z)e R : z#0}, where (X, y, z) are the standard coordinates in R™
) e d 0 . .
Let e = ex(£+ yg),ez =e* afy,eg =3 which are linearly

independent vector fields at each point of M. define a semi-
Riemannian metric g on M as

glej.e3) =gleg.e3) =gleg,e2) =0,g(ep,e1) =gleg.e) =gles.e3) =€
where e =11.
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Let n be the 1-form defined byN(%) =€ g(Z.e3) for any
ZeT(TM) and ¢ be the tensor field of type (1, 1) defined by
e =e3,9ep =—¢1,0e3 =0 Tpen by applying linearity of ¢ and g,
we have

N(e3) =1,0°Z = ~Z+N(Z)e3,2(0Z,0U) = g(Z, U)—€ n(Z)n(U),

for any Z,Ue T(TM). Hence for3 = g , (0, &,m, g, €) defines an e-
almost contact metric structure on M.

Let V be the Levi-Civita connection with respect to g and R be
the curvature tensor of type (1, 3), then we have

2
[e],ep]=€ (ye*e, —e“e3),[e,e5]=—€ €),[e5,e5] =—€ €.

By using Koszul's formula for the Levi-Civita connection with
respect to g, we obtain

1 2x 1 2x
Ve e3=-¢ e1+56 e7e. Ve,e3=—€ey —Eee e1.Ve,e3 =0,

2

| ) 1
Ve,€2 =-ce Ye3,Ve, e =€ e3te ye'e, Ve e) =-5€¢ ey,

2

1 - 1
X X X
Ve €1 =€ 3,V e =—€ ye e2+Eee e3,V63e1:56e €.

Now, for©3 =& , above results satisfy

Vx€ =€ {—aoX +BX-n(X)9)},

2x

with oc=—%e and p=-1. Consequently M (¢, &, 1, g, €) is a 3-

dimensional € -Trans-Sasakian manifold.
Using the above relations, we can easily calculate the non-
vanishing components of the curvature tensor as follows:

R(ep,e5)ey =—(1 +%e4x +y%e™)e;.R(ej.ep)e; = (1 +%e4x +y%e™)e,

R(ey.,e3)e3 = —e?

Xel +(ie4x —Dey,R(ej,e3)e3 = ezxez +(ie4x —De;,
_ 2x _ 1 4x
R(ej,e3)e, = —e“"e3,R(ej,e3)e; = —(1+Ze )es,

_ uaX _l 4x _ l 4x
R(ey,e3)ep =ye'e  +(1 4e )e3,R(e3,e1)e1—(l+4e )es,
R(es,ep)e; = —ezxe3 +ye¥e,.
and the components which can be obtained from these by the
symmetry properties.

Using the components of the curvature tensor, and (1.2) we
can easily calculate the concircular curvature tensor as follows:

~ r
C(ej,ep)ey =R(ep,ep)en —g[g(ez,ez)el —g(er.ep)es]
3 4x , . 202x €T
=—(1+=e"" +y“ e +—)e
( 2 y 5 Jep

2

Clej,en)e; = (1+%e4x +yze X +e—6r)e2

Cles.ey)e; = —e*Xey +ye¥e,,

Khairnar and Gaikwad

2

Cley.e3)e3 =—cte; +(ie4x -1 —e—ﬁr)ez,é(el,e3)e3 =ee, +(ie4x -1 —e—ﬁr)el,

é(el,e3)ez = —ezxe3,é(el,e3)el =—(1 +ie4x —e—6r)e3,
C(ez,e3)ez =ye¥e +(1—ie4x +%)e3,é(e3,el)el = (1+ie4x —e—6r)63.

Let us conceder operating by g on both sides of (3.3), we get
(0> (V, C(Y, Z)W, U} = A(X)g(C(Y. )W, U) + D(V)g(C(X, Z)W, U)
+D(Z)2(C(Y, X)W, U) + D(W)g(C(Y, Z)X, U)
+D(U)g(C(Y,Z)W,X) (4.1)
20> (Ve, C(Y, )W, U} = Ae)g(C(Y, Z)W, U) + D(Y)g(C(e;, )W, U)
+D(Z)g(C(Y, &)W, U)+D(W)g(C(Y,Z)e;, U)
+D(U)g(C(Y,Z)W, ¢;)

where ©i:i=L2.3. if R(Y, Z, W, U)#0 then we can find from (4.1)
the 1-forms as (4.2) and (4.3)

207 (Ve O)(Y,Z)W, U)
Alej) = i
C(Y,Z,W,U)

,i=12,3.

and
D(Y)g(C(e;, Z)W, U) + D(Z)g(C(Y, e )W, U)

+D(W)g(C(Y,Z)e;, U) +D(U)g(C(Y,Z)W.¢;) =0

Any vector fields Y, Z, W, U can be written as

Y= blel +b262 +b3e3,Z =C1¢ +C2€2 +C3C3,W = dlel +d262 +d3e3,
U= flel + fzez + f3e3.

Substituting these vector fields in (4.4), we find
plD(el) + qlD(ez) + rlD(e3) = 0
p2D(ep)+qzD(ey) +1,D(e3) =0

p3D(€1 ) + q3D(62) + r3D(e3) =0

Where Pi-9i-5 fori=1, 2, 3 are the functions of x, y, .
The set of equations in (4.3) are homogeneous in D, the trivial

solution always exist, so thatP(€i) =0 i=1, 2, 3. Thus one can state,

Theorem 4.1: A weakly concircular ¢-symmetric e -Trans-Sasakian

3
manifold ™”-8) (n>1), can be a ¢-recurrent e-Trans-Sasakian
manifold.
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if Pi-9i>5i fori=1, 2, 3 are such that

P 41 1
P2 92 1|=0
P3 93 13

Then the system (4.3) has infinite number of solutions, hence

one can state

Theorem 4.2: There exists a e- Trans-Sasakian manifold which is
weakly concircular ¢ symmetric but neither ¢ symmetric nor ¢-
recurrent.
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