

Photoluminescence of Ce³⁺ ions doped in LiAl₅O₈ aluminate systems

G. N. Nikhare*, S. C. Gedam+, S. J. Dhoble*

*Department of physics, RTM Nagpur University, Nagpur 440033, India *Department of physics, K.Z.S. Science College, Kalmeshwar, Nagpur 441501, India

Abstract

The aluminate phosphors LiAl₅O₈: Ce was synthesized by combustion synthesis. Photoluminescence (PL) characterization of the phosphors has been reported in this paper. The Photoluminescence (PL) emission spectra of the LiAl₅O₈: Ce phosphors show strong Ce³⁺ emission at around 310 nm for the excitation at wavelength of 254 nm wavelength of light due to the 5d \rightarrow 4f transition. These phosphors may be useful in scintillation.

Keywords: Combustion synthesis, photoluminescence; aluminates

INTRODUCTION

The interest in the rare earth doped alkaline earth aluminates has been largely due to their high luminescence efficiency under UV excitation and their ability to maintain their phosphorescence for several hours. Many authors have concentrated to developed aluminates as a lamp, scintillator, flat panel display, X-ray imaging phosphors.

Cerium-doped materials have been the topic of many investigations for their application as tunable- gain media in the ultraviolet (UV) and near UV [1]. The relationship between 4f n-15dlevel energies and crystalline environment, efforts were concentrated fully on Ce3+ doped systems. Very recently, D. Jia et-al. [2] developed a persistent phosphor CaAl₂O₄: Ce³⁺ with violet blue phosphorescence at 400 nm and a persistence time is more than 10 hrs. It is well known that Ce3+ is an efficient sensitizer, especially for Tb³⁺ [3]. The Ce³⁺ ion has only one 4f electron in the ground configuration. In excited configuration of Ce3+ there is one 5d electron with empty 4f shell. So, the structure of the 4f-5d transitions will be dominated by crystal-field splitting of the 5d states of Ce3+, since there is no interaction within 4f core and interaction between 4f core and 5d electron for Ce³⁺ which strongly influence the energy level structure for excited configuration of RE ions with more than one 4f electron [4,5]. Due to this reason, excitation spectrum of Ce3+ and emission for aluminate crystals at its lowest-energy edge of 4f-5d absorption should consist of wide absorption band.

For the understanding of the lanthanide f - d structure, knowledge about the excitation spectrum of Ce³⁺ in a certain host lattice is very important. The Ce³⁺ ion has the 4f¹ configuration and irradiation with UV radiation will excite this 4f¹ electron into a 5d orbital, leaving the 4f shell empty. Therefore, the excitation spectrum of Ce³⁺ will give direct information on the crystal-field splitting of the 5d orbitals; similar crystal-field splitting is expected for all rare-earth ions in the same host lattice. In this paper we have reported the PL study of the Ce³⁺ ion in aluminates hosts. All the phosphors (LiAl₅O₈: Ce and NaAl₁₁O₁₇: Ce) prepared by single step combustion synthesis [6].

have studied LiAl₅O₈ [7-9] for luminescence and phase formation respectively. In the present paper we report cerium activated phosphor prepared by combustion method and characterized photoluminescence (PL) properties.

Experimental

All the aluminates were produced through the urea combustion technique. For the stoichiometric compositions of the metal nitrates (oxidizers) and urea (fuel) were calculated using the total oxidizing and reducing valencies of the components. For the preparation of LiAl₅O₈: Ce, the constituents were Li(NO₃), 5Al(NO)₃, (NH₂)₂CO and Ce(NO)₃. The details of the reactions for all compounds are described as follows-

 $Li(NO_3) + 5AI(NO)_3 + Ce(NO)_3 + (NH_2)_2CO \rightarrow LiAI_5O_8:Ce + N_2 + H_2O + CO_2 \quad (1)$

Weighed quantities of each nitrates, urea is added and the mixture is crushed together into mortar for 1/2 hrs to form a thick paste. The resulting paste is transferred into a china crucible and introduced into a vertical cylindrical muffle furnace maintained at 500 °C. The mixture undergoes dehydration and then decomposition with liberation of NH₃ and NO_x. Large exothermicity results into a flame changing the mixture into gaseous phase. Flame temperature as high as 1600 °C converts the vapour phase oxides into mixed aluminates. The foamy product is crushed into a fine power and the resultant polycrystalline mass was crushed to fine particle in a crucible. The powder was used in further study. The X- ray diffraction patterns of all samples were matched with standard ICDD data. The photoluminescence (PL) emission spectra of the samples were recorded using Fluorescence spectrometer (Hitachi F-4000). The same amount of sample was used in every case. Emission and excitation spectra were recorded using a spectral slit width of 1.5 nm.

Results and discussion Photoluminescence of LiAl₅O₈: Ce

Figure1A shows the PL excitation spectra of Ce³⁺ ion in LiAl₅O₈ lithium aluminate (λ ex = 254 nm) monitored at 310 nm emission. Figure1B shows the PL emission spectra of Ce³⁺ ion in LiAl₅O₈: Ce (where, x = 0.1, 0.2, and 0.5 mole %). The emission peak wavelengths and its relative intensities are shown for different contents of Ce³⁺ ion. According to PL spectra, it is seen that the concentrations of Ce³⁺ ion not only affects the peak height but also the peak profile. With increase of Ce³⁺ concentrations, the emission intensity increases relatively and the emission peak position also

changed. In figure 1B the well known UV emission of Ce³⁺ ions in these phosphors is around 310-312 nm. This band is due to the allowed transition from 5d to 4f of Ce³⁺ ions giving maximum intensity for the excitation wavelength of 254 nm with a shoulder at 274 nm. The excitation energy matches with the energy separation between the ground state and lowest state of the 5d level of the ion. This situation populates the lowest 5d level to the maximum, which favors maximum emission intensity. Another characteristic feature of the emission band is the absence of the expected doublet arising due to the transition from 5d \rightarrow $^2F_{5/2}$ and $^2F_{7/2}$ levels due to spin orbit splitting of the 4f 1 ground state of Ce³⁺ ions. Figure 1C shows the energy level diagram for Ce³⁺ in LiAl₅O₈.

Fig 1. PL (A) excitation and (B) emission spectra of LiAl₅O₈: Ce_x (x =a. 0.5 mole%, b. 0.2 mole%, c. 0.1mole %) (C) Schematic energy level diagram of Ce³⁺ in LiAl₅O₈

CONCLUSION

Cerium-doped LiAl₅O₈ aluminate phosphor have been prepared by a single-step combustion synthesis in a normal

ACKNOWLEDGEMENT

One of the authors SJD is thankful to Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy, Govt. of India, for providing financial assistance (No. 2011/ 37P/ 10/BRNS /144).

REFERENCES

- P. Moulton, in: M. Bass, M.H. Stitch (Eds.), 1985. Laser Handbook, Vol. 5, North- Holland, Amsterdam, p. 282
- [2] D. Jia, R. S. Meltzer, W. M. Yen ,W. Jia and X. Wang, 2002. *Appl.Phys.Lett.* 8094
- [3] D. Jia, J. Zhu, and B. Wu, 2001. J. Lumin. 93 107.
- [4] L.van Pieterson, M.F. Reid, R.T. Wegh, S. Soverna, A. Meijerink, 2002. Phys. Rev. B65:04 5113.
- [5] L. van Pieterson, M.F. Reid, G.W. Burdick, A. Meijerink, 2002. Phys. Rev. B65:04 5114
- [6] J.J. Kingsley, K. Suresh, K.C. Patil, 1990. J. Mat. Sci. 25 1305
- [7] R. K. Datta, R.Roy, 1964. Journal of the American Ceramic Society, 46:388-390
- [8] D. Clay, D. Poslusny, M. Flinders, S. D. Jacobs, R. A. Cutler. 2006. Journal of the European Ceramic Society, 26 (8):1351-1362
- [9] Shreyas S. Pitale Vinay Kumar, Indrajit Nagpure, O.M. Ntwaeaborwa, H.C. Swart, 2011. Current Applied Physics, 11(3):341–345