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Implementation of a new third order weighted Runge-Kutta formula based 
on Centroidal Mean for solving stiff initial value problems  
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Abstract  
A new third order weighted Runge-Kutta formula based on Centroidal Mean(CeM) is derived and 
implemented. To illustrate the effectiveness of the method, a stiff problem has been chosen and compared 
with the classical fourth order Runge-Kutta method and the third order weighted  Runge-Kutta method based 
on Contraharmonic Mean(CoH). The stability of the new method is analysed. The investigation undertaken in 
the study reveals that the third order RK method based on CeM suits very well and indicates that this method 
is superior compared to the other methods discussed for the stiff initial value problems. 
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INTRODUCTION 
The initial value problem represented by 

.,)(),,( 00 bxayxyyxfy  Many 

methods exist for the solution of IVPs in differential 
equations.  According to Butcher (1987), it is a known fact 
that not all such methods have the capacity to find the 
solution to these IVPs. This led to the search and 
developed some one-step methods which can provide 
solution to IVPs. 

Before designing our formulae, many methods were 
considered and motivated by the striking proposal made by 
Evans and Sanugi (1993), Wazwaz (1990),  Ahmed and 
Yaacob (2005),Osama Yusuf Ababneh and Rokiah Rozita 
(2009) Novati (2003), Xin-Yuan Wu (1990) to study R-K 
method of order 3 to solve stiff problems and Wazwaz 
(1994), Evans and Yaccub (1996) & Murugesan et al. 
(2001, 2002, 2003), Sanugi and Evans (1993) & (1995), 
Evans and Yaccob (1995), Agbeboh, Aashikpelokhi, and 
Aigbedion (2007) to study  R-K formulae based on variety 
of means. Evans and Yaakub (1996), (1998) have done the 
research on the weighted RK formula. 

Recently, we studied about the modification of the 

explicit third order Runge-Kutta method using the 

Contrahormonic Mean (CoM) that can be used to solve 

Stiff Problems. In this paper, the explicit third order Runge-

Kutta method based on Centroidal Mean (CeM) is 

introduced to solve IVPs and give a good accuracy. 

A third order method for 3- stages of the (CeM) method are 

given in the form 
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Modified weighted Runge-Kutta Method of order three 
based on Centroidal Mean  (MWRK3CeM) 

It is possible to establish a three-stage Runge-Kutta 
formula based on the Centroidal Mean using the mean in 
the main formula which can be presented as follows: 
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W1 and w2 are the weights chosen in such a way that  

a1,a2, and a3 are parameters to be determined and 
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  is defined as the centroidal 

mean. Note that for simplicity of the algebra f have been 
considered as a function of y only, without loss of 
generality. This will considerably reduce the Taylor 
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Series expansions of Ki,i=1,2,3 to the following 
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                                 (4) 
Traditionally, the equations (2) to (4) would be 

substituted to obtain an expression of 1ny
 in terms of 

the function together with the parameter ai,i=1,2,3 and its 
derivatives. Since the algebra involved is the division of two 
series, 
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Here direct substitution cannot be done. These 
problems are alleviated by multiplying the terms across 
with the common denominator (k1+k2)( k2+k3) and can be 
written as  
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Taylor Series expansion of y (xn+1) may be written as  
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 (7) 
Since the error of the method can be measured using 

the expression 

11)(   nn yxyError
 

We get, 
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We could rewrite the above as, 

UpperLowerTaylorLowerError 
(8)                                                               

Comparing the coefficients of the same terms in (8) upto 
the term h3, we get the following equations of conditions: 
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    (12) 
Solving the equations (9)-(12) using MATLAB we 

obtained a set of parameters and weights shown below 
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The third order centroidal mean RK formula 
MWRK3CeM can be represented by, 
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Stability Analysis 

 To check on the stability when the weights 

2
1

22
1

1 ,  ww  , the equations in (13) & (14) are 

substituted into the simple test equation yy    and 

it yields, 

  nnn yyxfk  ,1         (17)      
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Substituting (17), (18), & (19)in (14),and letting hz  , 

 We obtain the simplified equation 
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which yield the stability polynomial 
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or in more simplified form, 
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To check on the stability when the 

weights
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are substituted into the simple test equation yy   

and it yields, 
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Substituting (20), (21), & (22) in (16),and letting hz   

we obtain the simplified equation 
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which yield the stability polynomial 
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Given R, we can determine its stability region by noting ,by 

the maximum modulus principal, that it is the region 

enclosed by the set of points for which IR(z)І=1. For a 

particular point z on the boundary of the stability region 

there must exists an angle θ for which )exp()( izR   

and we can trace out this boundary by solving this 

polynomial equation for values of θ in (0,2π) 

Various points on the boundary are located by taking θ in 

steps of 
n
2  from 0 to 2π and then invoking a procedure 

point which is supposed to print a point x+iy on this 

boundary. 

The method used to solve for Z=x+iy by the Newton – 

Raphson method, taking the value at the previous angle as 

the initial approximation and taking zero as the initial 

approximation for θ=0. The algorithm is designed so that it 

will deal with a polynomial 
szsazazaazR ][...]2[]1[]0[)( 2  . The 

variable eps is the required accuracy. 

Numerical Experiments 

The MWRK3CeM methods for two different weights are 

tested on the example of system of stiff differential 

equation to check on the accuracy of this method. We will 

comparing the new method by the existing classical fourth 

order Runge-Kutta method and the new third order 

weighted Runge- kutta method based on Contraharmanic 

Mean with the step size h=0.01.Where the fourth order 

classical Runge-Kutta method uses the formula 
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And the new third order weighted Runge- Kutta method 
based on Contraharmanic Mean for the weights 
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Example:  Consider the System of Stiff Differential 
Equation 
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The absolute error of the explicit MWRK3CeM method, h=0.01 on an example compared to MCHW-RK3 method when the weights 

4
3

24
1

1 ,  ww and the Classical RK4. 

Table: 1 

SYSTEM OF STIFF DIFFERENTIAL EQUATIONS 

 MCeMW-RK3 MCHW-RK3 RK4 

T X Y X Y X Y 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1.0000e+000   9.851825e-003 9.851825e-005 2.5053e-003 2.5019e-005 9.902479e-003 9.902479e-005 

2.0000e+000   9.753797e-003 9.753797e-005 4.8809e-003 4.8809e-005 9.803948e-003 9.803948e-005 

3.0000e+000   9.656745e-003 9.656745e-005 1.2175e-002 1.2175e-004 9.706397e-003 9.706397e-005 

4.0000e+000   9.560659e-003 9.560659e-005 1.9379e-002 1.9379e-004 9.609816e-003 9.609816e-005 

5.0000e+000   9.465529e-003 9.465529e-005 2.6492e-002 2.6492e-004 9.514197e-003 9.514197e-005 

 
The absolute error of the explicit MWRK3CeM method, h=0.01 on an example compared to MCHW-RK3 method when the weights 

2
1

22
1

1 ,  ww .and the classical RK4 

Table: 2 

SYSTEM OF STIFF DIFFERENTIAL EQUATIONS 

 MCeMW-RK3 MCHW-RK3 RK4 

T X y X Y x Y 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1.0000e+000   9.874997e-003 9.874997e-005 2.4177e-003 2.4172e-005 9.902479e-003 9.902479e-005 

2.0000e+000   9.776739e-003 9.776739e-005 4.9683e-003 4.9683e-005 9.803948e-003 9.803948e-005 

3.0000e+000   9.679459e-003 9.679459e-005 1.2262e-002 1.2262e-004 9.706397e-003 9.706397e-005 

4.0000e+000   9.583147e-003 9.583147e-005 1.9466e-002 1.9466e-004 9.609816e-003 9.609816e-005 

5.0000e+000   9.487793e-003 9.487793e-005 2.6579e-002 2.6579e-004 9.514197e-003 9.514197e-005 

 
  

Error graph of the stiff problem to MWRK3CeM, MCHW-RK3 methods when the weights
4
3

24
1

1 ,  ww and 

 the classical RK4 taking h = 0.01 
Figure: 1 

 
 

 
 

 
 
 
 
 
 
 

The stability region of the MWRK3CeM ),(
2
1

2
1   

Figure: 2 
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The stability region of the MWRK3CeM  
4
3

4
1 ,  

Figure: 3 

 

 
 

 
 
 
 
 

 

 

 

 

DISCUSSION AND CONCLUSION: 

The research done in this paper shows the possibility of 
constructing an  explicit three-stage third order Centroidal mean 
Runge-Kutta formula to solve initial value problems . With the 
purpose of verifying the accuracy of the above said method an 
example of the stiff differential equation is taken and compared 
with the existing Classical RK4 and MCHW-RK3 methods. Table 1 
and table 2 shows the absolute error of an example for the 
methods when 

 h = 0.01 when the weights are taken as 

4
3

24
1

1 ,  ww
and 2

1
22

1
1 ,  ww

respectively.  Figure 1 
represents the error graph of the stiff problem to MWRK3CeM, 
MCHW-RK3 , RK4 methods taking h=0.01 when the 

weights 4
3

24
1

1 ,  ww
. Figures 2, 3 show the stability of the 

new MWRK3CeM method for different weights. The results show 
that there is an excellent accuracy of MWRK3CeM method using 
the step size h=0.01 for the system of stiff differential equations 
when compared to both MCHW-RK3 and RK4. For the system of 
stiff differential equations MWRK3CeM method gives more 

accuracy when the weights are taken as 4
3

24
1

1 ,  ww
than 

the weights are taken as 2
1

22
1

1 ,  ww
. But both the methods 

are equally good.  
         From this discussion it is clearly confirmed that the new 

proposed MWRK3CeM method is appropriate for the system of 
stiff differential equation. 
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