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Introduction
Stiff systems of ordinary differential equations (ODEs) are 

very important special case of the systems occur in initial value 
problems. Stiff problems arise in many areas such as chemical 
kinetics, nuclear reactor theory, control theory, biochemistry, 
climatology, electronics, fluid dynamics, etc. While solving stiff 
problems numerically by a given method with assigned 
tolerance, a step size is restricted by stability requirements 
rather than by the accuracy demands. This behaviour is 
usually observed in problems that have some components that 
decay much more rapidly than other components. Due to this 
behaviour, ODEs have been divided into stiff and non-stiff 
problems. Models with either all fast or all slow changing 
variables are non-stiff problems. Models with both fast and 
slow changing variables are stiff problems. The problem of 
stiffness also occurs in DDEs.  

Roth [1] has proposed difference methods for solving stiff 
DDEs.  Staay [2] has introduced composite integration-
interpolation methods for the solution of stiff DDEs.    Bocharov 
et al.[3] have considered the application of linear multistep 
methods (LMMs) for the numerical solution of stiff DDEs with 
several constant delays, which are used in mathematical 
modelling of immune response. El-Safty and Hussien [4] have 
obtained the numerical solution of stiff DDEs in the form of 
Chebyshev series. Guglielmi and Hairer [5] have implemented 
Radau IIA methods for stiff DDEs. Huang et al. [6] have 
discussed the error behaviour of general linear methods for 
stiff DDEs. Bellen and Zennaro [7] have dealt the numerical 
treatment of DDEs (including stiff problems) in different fields 
of science and engineering.  Zhu and Xiao [8] have discussed 
parallel two-step ROW-methods (PTSROW methods) for the 
numerical solution to stiff DDEs and analyzed the stability 
behaviours of these methods. 

The roles of block pulse function (BPF), Walsh function 
(WF) and Walsh series (WS) have been important in solving 
delay problems. Chen and Shih [9] have presented the WS 
method to solve single delay systems.  Rao and Srinivasan 
[10] have applied BPF for synthesis of systems with time 
delays. Rao and Palanisamy [11] have analysed time delay 
systems using WFs. Hwang and Shih [12] have studied the 
optimal control of delay systems via BPF. Palanisamy et al. 
[13, 14] have presented the STWS technique to discuss the 
effect of time delay on system performance and for the optimal 
control of linear time-varying delay systems. 

This paper presents the STWS technique for the 
numerical solution of stiff linear systems of DDEs with single 
and multiple constant delays. The applicability of this technique 
is demonstrated with examples of delay systems. The discrete 
solutions obtained using this technique is compared with their 
corresponding exact solutions. 

STWS Technique to Systems with Single Delay  
Consider the system of equations with single delay of the 

form 

 ( ) ( ) ( ) ( ),x t Ax t Lx t Bu tτ= + − +&  

 ( ) ( ),x t tφ=   [ ,0),t τ∈ −           (1) 

where x is a state vector, x&  is a rate vector, u is an input 
vector, A, L, and B are nxn, nxn, nx1 matrices respectively. 

The given functions are expanded as STWS in the 

normalized  interval s ∈  [0, 1) which corresponds to  

t∈ [0, 1/m) by defining t = s/m, m being any integer. In the 
normalized interval, Eqn. (1) becomes 
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 ( )   x(s)   x(s-N)  u(s)
m m m

L B
x s = + +&  (2) 

with N mτ= . Expressing Eqn. (2) in STWS at the kth 
interval as   
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the following set of recursive equations with the operational 

matrix for integration  
1

2
E =  has been obtained: 

 

1
A

T(k)  I -  G( )    
2m

k

−

 
=   

 
1

( )  T(k)  x(k-1) 
2

S k = +    (3) 

 x(k)  T(k)  x(k-1)      = +      
where 

 ( )  x(k-1)   S(k-N) +  H(k)
m m m

A L B
G k = +

  
for k = 1, 2, 3, . . . . Using the recursive relations given by 

Eqn. (3), piecewise constant solutions of ( )x t& and x(t) can 
be evaluated for any length of time.  

STWS Technique to Systems with Multiple Delays 
Consider a system with multiple delays 

1

( ) ( ),
n

i i u

i

x Ax L x t Bu tτ τ
=

= + − + −∑&     where  

1 2 3... ,nτ τ τ τ< < <  

( ) ( ),ix t tϕ=  0,i tτ− ≤ <  
   (4) 

( ) ( )
u

u t = t ,ϕ
 

0,
u
τ t− ≤ <  0( ) (0).x t x=  

The given functions are expanded as STWS in the 
normalized interval s ∈  [0, 1) which corresponds to  

t ∈  [0, 1/m) by defining t = s/m, m being any integer. In the 
normalized interval, Eqn. (4) becomes 

1

( ) ( ) ( ( ))
n

i
i i

i

LA
x s x s x s N

m m
α

=

= + − +∑&

     

          

1
( ( )),u uBu s N

m
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             (5)  

where   ( ) /i i iN mτ α= +     and    

( ) / .
u u u
τ = N +α m

    
Here N’s represent the integer parts of the delays and  

α ' s
  represent the fractional parts.  

Expressing Eqn. (5) in STWS, the following set of 
recursive equations with the operational matrix for integration 

1

2
E =  has been obtained: 
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for k = 1, 2, 3, . . . Using the recursive relations given by 

Eqn. (6), piecewise constant solutions of ( )x t& and x(t) can be 
evaluated for any length of time.  

Stability of computations in the Walsh series approach to 
delay differntial equations [12] 

Consider the function f(t), its Walsh series representation 

)(* tFf Tψ= and the consequent error all in 
L

2 -space 

over the interval  : [0,1).I t ∈ The representation error e(t) is 

given by e(t) = f(t) – f*(t) and FT is chosen to minimize ||f – f *||. 
Under this condition the residual error have an upper bound 
such that 

  
1

1
sup

2 3
k

I

df
e

dt+

 
≤  

 
. 

If the error in representing 

1

0

( )t dtψ∫  in terms of ( )tψ  

is   
( )

0

( ) ( ),

t

t
t dt E tγ ψ ψ= −∫ then 

       γ   ≤  ( )
1

1
sup .

2 3k
I

f
+  

In view of this, k should be chosen suitably to remove this 
error totally.  

Consider the case of delay differential equations. If the 

error in representing ( )tψ τ− in terms of ( )tψ is 

( ) ( ) ( ),T Td t F t F D tψ τ ψ= − −  where 

( ) / ,N mτ α= +
  
0 1,α< <

   N = 0, 1. . . m -1   and  

m = 2
k

,  it has been shown that 
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(1 )
sup inf

2k II

d
ττ

α α  −
 ≤ −
 
   

where 
Iτ

 is the total interval [-τ , 1).  

d  vanishes if  ∝ = 0 or 1 and has a maximum value at 

∝ = ½. In view of this, k should be chosen such that  ∝  is 0 or 
1 to remove this error totally. Stability of computations for the 
case of multiple delays is a straightforward extension of these 
ideas. 

Numerical Examples 
Example 1   

Consider the stiff linear delay system with single delay [8] 

( ) ( ) ( 0.1) ,x t Lx t Mx t N= + − +&
       

0 10,t≤ ≤  
2( ) (1 ,1 ) ,t t T

x t e e
− −= + +

             
0.1 10,t− ≤ ≤

 
where  

1001 125
,

8 0
L

− − 
=  
 
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.

8 8 2
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e e
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=  

− + + 
 

The exact solution is  
2( ) (1 ,1 ) .t t T

x t e e
− −= + +  

For this problem, the discrete solution has been 
calculated using the STWS algorithm given by Eqn. (3) with  
m = 100 and been compared with its exact solution. These 
results are shown in Table 1 and the error graph of this 
example is shown in Fig. 1. 

Example 2   
Consider the stiff linear system with multiple delays [4] 

1 1 2 1

1 1
( ) ( ) ( 1) ( ),

2 2
x t x t x t f t= − − − +&  

 2 2 1 2

1 1
( ) ( ) ( ) ( ),

2 2
x t x t x t f t= − − − +&

 [0,5],t∈  

with the initial functions 

 
/2

1( ) t
x t e

−=   for   
1

0,
2

t− ≤ ≤  

2 ( ) t
x t e

−=   for   1 0,t− ≤ ≤
    

and   
( 1)

1

1
( ) ,

2

tf t e− −=        
( 1/2)/2

2

1
( ) .

2

tf t e− −=  

The exact solution is given by 

 
/2

1( ) t
x t e

−= ,   2 ( ) .t
x t e

−=  

The discrete solution of this system has been calculated 
using the STWS technique given by Eqn. (3) with m = 100. The 
exact and STWS solutions and the absolute errors between 
them are shown in Table 2. The error graph of this example is 
shown in Fig. 2. 

Example 3   
Consider the stiff delay problem [15] 

( ) 1000 ( 1) ,x t x qx t c= − + − +&
 
0 10t≤ ≤

 
with      q = 997/exp (3),   c = 1000 – q.  
The exact solution of this problem is given by     
x(t) = 1+ exp(-3t). 
The STWS solution of this example has been calculated 

using the algorithm given by Eqn. (3) with m = 100 and is 
compared with its exact solution. These results are shown in 
Table 3. The error graph of this example is shown in Fig. 3.                                                  

Example 4   
Consider the stiff delay problem [15] 

( ) 1000 ( 1) ,x t x qx t c= − + − +&
 
0 10t≤ ≤

 
with      q = 999/e,   c = 1000 – q.  
The exact solution of this problem is given by 
  x(t) = 1+ exp(-t). 
For this problem, the discrete solution has been 

calculated using the STWS technique given by Eqn. (3) with  
m = 100. The exact and STWS solutions and the absolute 
errors between them are shown in Table 4. The error graph of 
this example is shown in Fig.4.

 
Table 1 

Time  
t 

STWS Solution Exact Solution Absolute Error 

x1 x2 x1 x2 x1 x2 
0 2.000000 2.000000 2.000000 2.000000 0.00E+00 0.00E+00 

1 1.367473 1.136489 1.367879 1.135335 4.06E-04 1.15E-03 

2 1.132522 1.018456 1.135335 1.018316 2.81E-03 1.40E-04 
3 1.048516 1.002491 1.049787 1.002479 1.27E-03 1.22E-05 

4 1.017421 1.000338 1.018316 1.000335 8.95E-04 2.39E-06 

5 1.006456 1.000045 1.006738 1.000045 2.81E-04 2.47E-07 

6 1.002299 1.000007 1.002479 1.000006 1.80E-04 4.17E-07 
7 1.000819 1.000001 1.000912 1.000001 9.30E-05 3.58E-07 
8 1.000303 1.000000 1.000335 1.000000 3.26E-05 1.18E-07 
9 1.000115 1.000000 1.000123 1.000000 8.22E-06 1.33E-08 
10 1.000044 1.000000 1.000045 1.000000 1.57E-06 6.75E-09 

    
 
 



Emimal Kanaga Pushpam and D. Paul Dhayabaran/Rec Res Sci Tech 3 (2011) 63-68 

  

  

 66

Fig. 1 
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Fig. 2 

 
 
 
 
 
 
 
 
 
 
 

Table 3 
 

Time   
t 

STWS Solution 
 

Exact Solution 
 

Absolute Error 

0 2 2 0.00E+00 
1 1.049638 1.049787 1.49E-04 
2 1.002464 1.002479 1.49E-05 
3 1.000122 1.000123 1.11E-06 
4 1.000006 1.000006 7.34E-08 
5 1.000000 1.000000 4.56E-09 
6 1.000000 1.000000 2.72E-10 
7 1.000000 1.000000 1.58E-11 
8 1.000000 1.000000 8.97E-13 
9 1.000000 1.000000 5.02E-14 
10 1.000000 1.000000 2.22E-15 

 
 
 
 
 

Time  
t 

STWS Solution Exact Solution Absolute Error 

x1 x2 x1 x2 x1 x2 

0 1.000000 1.000000 1.000000 1.000000 0.00E+00 0.00E+00 

1 0.549037 0.335213 0.606531 0.367879 5.75E-02 3.27E-02 

2 0.349543 0.126543 0.367879 0.135335 1.83E-02 8.79E-03 

3 0.227179 0.054349 0.22313 0.049787 4.05E-03 4.56E-03 

4 0.138985 0.020556 0.135335 0.018316 3.65E-03 2.24E-03 

5 0.083515 0.007512 0.082085 0.006738 1.43E-03 
7.74E-04 
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Fig. 3 

 
 
 
 
 
 
 
 
 

 
 

Table 4 
 

Time  
t 

STWS Solution 
 

Exact Solution 
 

Absolute Error  
 

0 2 2 0.00E+00 
1 1.367512 1.367879 3.68E-04 
2 1.135065 1.135335 2.71E-04 
3 1.049638 1.049787 1.49E-04 
4 1.018242 1.018316 7.32E-05 
5 1.006704 1.006738 3.36E-05 
6 1.002464 1.002479 1.48E-05 
7 1.000906 1.000912 6.36E-06 
8 1.000333 1.000335 2.67E-06 
9 1.000122 1.000123 1.11E-06 
10 1.000045 1.000045 4.52E-07 

 
Fig. 4 

 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 In this paper, the STWS technique has been presented to 

determine the discrete solutions for the linear delay systems 
with single and multiple constant delays. The stability of 
computations in the Walsh series approach to DDEs has been 
discussed. The applicability of the STWS technique has been 
demonstrated by considering four examples of stiff linear delay 
systems. The STWS solutions of these systems have been 
determined and compared with their corresponding exact 
solutions. From the numerical results, it is observed that the 
STWS technique is very much applicable and suitable for 
solving stiff linear delay systems of single as well as multiple 
constant delays.  
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