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Introduction 

The idea of dual sequence spaces was introduced by 
Köthe and Toeplitz [6]. In fact, the basic problems in the theory 
of complex sequence space or scalar valued sequence space 
deal with the transformation of complex sequence by infinite 
matrices of complex numbers. The basic results in this regard 
may be seen in the books of Cooke [3] ,Hardy [4] and Maddox 
[5]. 

 When the infinite matrices of complex numbers operate 
on a complex sequence, we come across an infinite series 
whose convergence has given rise to the concept of β-duals 
also called as Köthe-Toeplitz duals. Thus if E is a set of 
complex sequences, then β-dual of E is denoted by Eβ and is 
defined as 

Eβ = {a = (ak) ∈ ω :  ∑
∞

=1k
kk xa  converges for all x = (xk) 

∈E, where ω is the set of all complex sequences} 
 The main result of Köthe and Toeplitz [2] is concerned 

with α-duals. If ω is the set of all complex sequence spaces, 
then the α-dual of E, (where E ⊂ ω) is denoted by Eα and is 
defined as 

Eα = {a = (ak) ∈ ω : ∑
∞

=1
||

k
kk xa   converges for all x = 

(xk) ∈ E} 
 An account of the theory of α-duals in the scalar case 

may be found in G. Köthe [6]. Another dual, the γ-dual of the 
set E ⊂ w is denoted by Eγ and is defined as 

 Eγ = {a = (ak) ∈ ω : supn ∑
=

n

k
kk xa

1
 < ∞ for all x = < xk > 

∈ E} 
 After Robinson’s paper in 1995 [7] where in he 

considered the action of matrices operators on Banach space 
valued sequence, a decisive break occurred. This gave the 
concept of generalized Köthe-Toeplitz duals as given below. 

 Let X and Y be a Banach spaces and E((X) is a set of X-
valued sequences i.e. E(x) is a non-empty set of sequence x = 
(xk) with xk ∈ X. The several generalized Köthe-Toeplitz duals 
arise when the element complex sequence (ak) of α-duals and 
β-duals set is replaced by a sequence (Ak) of linear operators, 
where each Ak is a linear operator from X into Y. Thus, we 
define β-dual of E(X) as 

 Eβ(x) = {(Ak) : ∑
∞

=1
)(

k
kk xA   converges in Y, for each  

(xk) ∈ E (X)}    and α-dual of E (X) as  

 Eα(X) = {(Ak) : ∑
∞

=1
||||

k
kk xA  converges for all (xk) ∈ E} 

 Furthermore, Maddox [8] has also given the convergence 
of sequence of operators which are not necessarily bounded. 

Notation and Terminology  
 We denote the set of all natural, real and complex 

numbers by N, R and C respectively. A sequence x = (xk) is 

said to be an entire sequence if 0||lim
1

=
∞→

k
kk

x  and a 
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sequence x = (xk) is said to be an analytic sequence if      

{ }k
kx

1

||      is bounded. 
 If (X, ||.||) is any Banach space over C, then we define 

}0||||,:{),(|
1

0 =∈>=<=
∞→

kp
k

k
k xLimitXxxpx  

}||||,:{),(|
1

lxLimitXxxpx kp
k

k
kc =∈>=<=

∞→
 

}||||,:{),(|
1

∞=∈>=<=
∞→

∞
kp

k
k

k xLimitXxxpx  

where < pk > is a sequence of positive real number such 
that  pk ≥ k, for each k and l is a non-negative real number. 

 Let X and Y are Banach spaces and < Ak > is a linear 
operator from X onto Y and E is non-empty set of sequence x 
= (xk) with xk ∈X. 

 Then, we define �-duals, �-duals (m, �) duals and (m, �) 
duals of E as 

 Eα = {< Ak > :  ∑
∞

=1
||||

k
kk xA  converges for all x = < xk > 

∈E} 

 Eβ = {< Ak > :  ∑
∞

=1k
kk xA converges is Y for all x = < xk > 

∈E} 
 Em,α = {< Ak > : < Ak > is a sequence of linear operator 

but not necessarily bounded such that for some m; 

∑
∞=

=

k

mk
kk xA ||||   converges for all < xk > ∈ E} 

 Em,β = {< Ak > < Ak > is a sequence of linear operator 

but not necessarily bounded such that for some m; ∑
∞=

=

k

mk
kk xA   

converges in Y for all < xk > ∈ E} 
 Let B (X, Y) denote the Banach spaces of the bounded 

linear operators from X into Y with the usual operator norm. 
From the definition of the spaces, 

.),(|,),(|,),(| 0 pXpXpX c ∞ . It is obvious that 
  .),(|),(|),(| 0 pXpXpX c ∞⊂⊂  
 Thus, if T ∈ B(X, Y), the operator norm of T is 
 || T || = sup {|| T (x) ||}:  x∈S}, where 
 S = {x ∈ X: || x || ≤ 1} is a closed unit sphere in X. 

Definitions: Let < Tk > = < T1, T2, T3, ........> be a sequence 
in B (X, Y). Then, the group norm of (Tk) is 

  || (Tk)|| = sup ∑
=

n

k
kk xT

1
)(  

where supremum is over all n ∈ N and all xk ∈ S. 

Main Results 
Lemma 1. If (Tk) is a sequence in B (X, Y) and we write Rn = 
(Tn, Tn+1,..), then 

 (i) || Tm || ≤ || Rn ||, for all m ≥ n 

 (ii) || Rn+1 || ≤ || Rn ||, for all n ∈ N 

 (iii) ∑
+

=

pn

nk
kk xT  ≤ || Rn || .max {|| xk || : n ≤ k ≤ n + p} 

for any xk, for all n ∈ N and all non-negative integer p. 

Lemma 2.  If (Tk) is a sequence in B (X, Y), then 
  Σ || Tk || < ∞  ⇒  

1
sup

≥k
  ║Tk ║< ∞  

  

Theorem 1.  < Ak > ∈ β,
0 ),(| mpX    iff ∃ m ∈ N such that 

 (i) Ak ∈ B (X, Y) ;  for each  k ≥ m. 

 (ii) kp
k

mk
A

1

||||sup
≥

 < ∞ 

Proof : Suppose the condition (i) and (ii) holds good. 
 Let � < xk > ∈ 0lim),(|0 =⇒

∞→k
pX  

 ⇒ To each ∈ > 0 ∃ +ve integer m such that 
 ║ xk ║1/ pk  < ∈ for all k ≥ m     ...(3.1.1) 
 Since, 

mk≥
sup   ║ Ak ║1/ pk < ∞ 

 ⇒ ∃ a real number M > 0 such that M ∈ < 1 

and kp
kA

1

||||   < M for all k ≥ m   ...(3.1.2) 
from (1) and (2),  ║ Ak ║1/ pk  ║ xk ║1/ pk  < M∈ 
 ⇒ (║ Ak ║ ║ xk ║)1/ pk  < M∈ 
 ⇒ || Ak || . || xk || < (M∈) pk 

 (since M ∈ < 1 and pk ≥ k ⇒ (M∈)pk ≤ (M∈)k). 

⇒ || Ak || . || xk || < (M∈)
k
            ...(3.1.3) 

By result,      || Ak . (xk) || � || Ak || . || xk ||, k ≥ m. 
...(3.1.4) 
  
From (3.1.3) and (3.1.4), || Ak . (xk) || < (M∈)k for all k ≥ 

m. 

∑∑∑
∞

=

∞

=

∞

=
∈<≤

mk

k

mk
kk

mk
kk MxAxA )(||||  

=  ∞<
∈−

∈
=⎥⎦

⎤
⎢⎣
⎡

∈−
∈

M
M

M
M

m
m

1
)(

1
1)(  

⇒ ∑
∞

=1k
kk xA  converges in Y for all < xk > ),(|0 pX    

consequently, 
< Ak >  ∈  β.

0 ),(| mpX . 

 Conversely, Let < Ak > ∈ 
β,

0 ),(|
m

pX     
But that no m exists for which Ak ∈ B (X, Y) for all k ≥ m. 
 ⇒ ∃ a sequence < ki > of natural no. such that ki ≥ i and 

Aki ∉ B (x, y), for each i 
 ⇒ || Aki || = ∞ where ki ≥ i,  for each ki ≥ i 
 ⇒ || Aki || = sup { || Aki (z) || : for each z ∈ X and || z || 

≤ 1} = ∞ 
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 ⇒ 
Sz∈

sup  || Aki (z) || = ∞ where ki ≥ i,  for each ki ≥ i 

 ⇒ ∃ a sequence < zi > in S such that 

  || Aki (zi) || > i2pki
  where ki ≥ i,  for each ki ≥ i 

Define    xk =    
⎪⎩

⎪
⎨
⎧

=

≠

ip
i

i

kk
i

z
kk

ik2

,0
 

For k ≠ ki, ║ xk ║1/ pk  = 0 
 and for k = ki , ║ xk ║1/ pk  =  ║ xki ║1/ pk  = ║ zi ║1/ pk / i2 ≤ 1/ i2 

→ 0 as i → ∞, i.e. ki → ∞, i.e. k → ∞ (since || zi || ≤ 1) 
⇒║ xk ║1/ pk    → 0  as k → ∞. 
Hence, < xk > ∈ ),(|0 pX  
 For k = ki,  || Ak xk || = || Aki (xki) || 

  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ikp

i
ki

i
zA 2        = 

ikp
iki

i

zA
2

||)(||
    > 1 for large 

value of k. 

 Hence, ∑
∞

=mk
kk xA )(  does not converge, which is 

contradiction to our assumption. Hence our assumption is 
wrong. 

 Therefore, ∃ m∈ N such that Ak ∈ B (X, Y), for k ≥ m. 
Again suppose if possible (ii) fails 
 ⇒ There does not exist any m ∈ N such that  

∞<
≥

kp
k

mk
A

1

||||sup  

 ⇒ To each m ∈ N,  ∞=
≥

kp
k

mk
A

1

||||sup  

 ⇒ kp
k

k
A

1

||}{||sup
1≥

 = ∞ 

 ⇒      ∃ a sequence < ki > of natural no. such that ║ Aki 

║1/ pki > 2i for i ∈ N. 
Again since, (1/ 2k )|| Ak || ≤ || Ak || and || Ak || = sup 

{|| Ak (z) ||: for each  z ∈ S} 
 ⇒ (1/ 2k ) || Ak || ≤ sup {|| Ak (z) || : for each  z ∈ S } 
 ⇒ ∃ a sequence < zk > in S such that (1/ 2k )  || Ak || ≤ 

|| Ak (zk) || 

 ⇒ || Ak || ≤ 2k || Ak . (zk) || i.e. || Ak (zk) || ≥ || Ak || / 2k 
Define      xk   =   Zk / i pk       for k = ki      and   xk =    0  

for k ≠ ki ;     
For k = ki  

0||||.1||||
1

1
1

→== kp
kp

kp
kpk

k
k z

ii
zx  as i → ∞, i.e. ki 

= k → ∞ 
and for k ≠ ki,  ║ xk ║1/ pk  = 0 

Then < xk > ∈ ),(|0 pX  
But for k = ki, 

 || Ak xk || = ⎟
⎠
⎞

⎜
⎝
⎛

kp
k

k i
zA   

 =
kk p

k
pkk

k
kkp i

A
i

AzA
i )2(

||||
.2

||||||)(||1
≥≥   > 1  for large 

value of k. 
⇒ Σ Ak (xk) diverges, which is contradiction to our 

assumption. Hence our assumption is wrong. 

 Therefore, ∃ m ∈ N such that  ∞<
≥

kp
k

mk
A

1

||||sup  

Theorem : 2. < Ak > ∈ ),(
0 ),(| αmpX    iff ∃ m ∈ N 

such that (i) Ak ∈ B (X, Y), for k ≥ m. 

 and (ii) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
∞

=1
||||

k
kA   < ∞ 

Proof : Suppose the condition (i) and (ii) holds good. 

 Let x = (xk) ∈  ),(|0 pX   ⇒ kp
k

k
xLimit

1

||||
∞→

 = 0 

 ⇒ for given ∈ > 0 ∃ a +ve integer m such that 
  || xk ||1/ pk < ∈ for all k ≥ m. 
i.e. || xk || < ∈ pk, for all k ≥ m    ...(3.2.1) 

 since  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
∞

=mk
kA ||||   < ∞ 

 ⇒ ∃ real number M > 0 such that M ∈ < 1 

and  ∑
∞

=mk
kA ||||  ≤ M, for all k ≥ m. 

⇒ || Ak || < M ≤ (M pk), for all k ≥ m.          ...(3.2.2) 
from (3.2.1) and (3.2.2), || Ak || . || xk || < M pk . ∈ M pk = 

(M∈)pk ≤ (M∈)k 

∞<⎥⎦
⎤

⎢⎣
⎡

∈−
∈=∈<∑ ∑

∞

=

∞

=mk mk

mk
kk M

MMxA
1

1)()(||||

(since M ∈ < 1 and pk ≥ k ⇒ (M∈) pk ≤ (M∈)k). 

 ⇒ ∑
∞

=mk
kk xA ||||   converges. 

 consequently, < Ak > ∈ 
),(

0 ),(|
αm

PX     

 conversely, suppose < Ak > ∈ 
),(

0 ),(| αmPX    
and there exist no m such that Ak ∈ B (X, Y) for k ≥ m 
 ⇒ ∃ a sequence < ki > of natural numbers such that 

Aki ∉ B (X, Y), for each i 
 ⇒ || Aki || = ∞, for each i 
 ⇒ || Aki || = sup {|| Aki (z) || : for each z ∈ X and || z || 

≤ 1} = ∞ 
 ⇒ 

Sz∈∀
sup   || Aki (z) || = ∞ , for each z ∈ S 

  i.e. || z || ≤ 1 
 ⇒ ∃ a sequence < zi > in S such that || Aki (zi) || > i2pki

  where ki ≥ i 



K. B. Gupta and Ashfaque A. Ansari/Rec Res Sci Tech 2011, 3(7): 95-99 
 
  

 98

Define   xk   =   Zi / i2 pk       for k = ki      and   xk =    0  
for k ≠ ki ;     

 For k = ki  
║ xk ║1/ pk  =  ║ Zi / i2 pk   ║1/ pk  = ║ zi ║1/ pk / i2 → 0 as i → ∞, 

i.e. k = ki → ∞ 
and   for k ≠ ki,  ║ xk ║1/ pk  = 0 

Then < xk > ),(|0 PX  
 for k = ki ≥ m, 
 || Ak (xk) || = ║ Ak ( Zi / i2 pk  ) ║ = ║ Ak ( Zi) ║ (1 / i2 pk ) > 1   

for every value of k. 

 ⇒ ∑
∞

=mk
kk xA |||| does not converge, which is 

contradiction. 
 Hence, our assumption is wrong. 
Therefore, ∃ m ∈ N such that Ak ∈ B (X, Y), for each  k ≥ 

m. 
 Again suppose (ii) fails 

 i.e. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
∞

=mk
kA ||||    = ∞ 

Then ∃ a strictly increasing sequence < ni >  such 

that ∑
+=

+=

1

1
||||

i

i

nk

nk
kA > (2i) pk 

and ∃ a sequence < zk > in S such that  2k || Ak (zk) || ≥ || 
Ak || 

Define xk   =   Zk / i pk       for ni < k ≤ n(i+1)        and   xk 
=    0  otherwise ;     

For k = ki 

i
z

i
zx

kpkp

k

kp k
p
k

k

11
1 |||||||| ==  → 0 as I → ∞ i.e. k = ki 

→ ∞ 
For k ≠ ki, ║ xk ║1/ pk  = 0 
Then < xk > ∈ ),(|0 PX  
But 

∑ ∑∑
+ ++

+= +=+=
=⎟

⎠
⎞

⎜
⎝
⎛=

1 11

1 11

||)(||||||
i

i

i

i
k

i

i
k

n

nk

n

nk
p

kk
n

nk
p
k

kkk i
ZA

i
zAxA   

 ≥    ∑ ∑
+ +

+= +=
≥

1 1

1 1 )2(
||||

,2
||||i i

kk

n

nk

n

nk
p

k
pk

k

i
A

i
A

   > 1   

 ⇒ ∑
∞

=mk
kk xA ||||   does not converge,  which is a 

contradiction. 
 Hence our assumption is wrong 
Therefore, ∃ m ∈ N such that  

∑
∞

=mk
kA ||||  < ∞. 

Theorem : 3. < Ak > ∈   ),(),(| β
∞

mpX    iff 

 (i) < Ak > ∈   ),(
0 ),(| βmpX     

 (ii) || Rn || 1/n → 0 as n → ∞. 
Proof : Suppose (i) and (ii) holds good. 

 Let x = < xk > ∈ ),(| pX∞    
 ⇒ ∃ a real number M > 0 such that || xk ||1/ pk < M. 
since,  || Rn || 1/n → 0, and for every ∈ > 0, 
  || Rk || 1/k < ∈/M   for sufficiently large k. 
we have the identity by the Lemma (1), 

∑
+

=

pn

nk
kk xA )(  ≤ || Rn || .max {|| xk || : n ≤ k ≤ n + p} ≤ 

∈k 
for sufficiently large k. 
Hence Σ Ak xk converges. 

consequently, (Ak) ∈ 
),(

),(|
β

∞
m

pX     

conversely, Let < Ak > ∈ ),(),(| β
∞

mpX     
 since  ),(| pX∞   ⊂ ),(| pX∞    

 ⇒ 
),(),(| β

∞
mpX  ⊂ ),(),(| β

∞
mpX     

and therefore (Ak) ∈ ),(),(| β
∞

mpX     ⇒ (Ak) ∈ 
),(),(| β

∞
mpX     which proves (1) 

 Now suppose, if possible that (ii) fails 
 Let   limn sup || Rn || 1/n = 3p > 0. 
 Then, there exist natural numbers n1 > m1 > m and zm, 

.........., zn in S such that 

 ∑
=

1

1

n

mk
kk zA      > p 

choose m2 > n1 such that || Rm2 || 1/m2 > 2p. 
 Then there exist n2 � m2 and zm2, ...... ,zn2 in S such 

that ∑
2

2

)(
n

m
kk zA    > p. Proceeding in this way, we and define 

  xk =  0  , k ≤m1 
      = zk  , m1≤ k≤ n1 
     =  0  ,  n1≤ k≤ m2 
     =  zk  , m2≤ k≤ n2  and so on. 
 Then  x = (xk) ∈ ),(| pX∞    
But Σ Ak xk diverges which is contradiction to the fact that 

(Ak) ∈ ),(),(| β
∞

mpX     
Hence our assumption is wrong. 
Therefore  || Rn || 1/n → 0 as n → ∞. 
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